DOI QR코드

DOI QR Code

An Index-Building Method for Boundary Matching that Supports Arbitrary Partial Denoising

임의의 부분 노이즈제거를 지원하는 윤곽선 매칭의 색인 구축 방법

  • Kim, Bum-Soo (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2019.09.24
  • Accepted : 2019.10.14
  • Published : 2019.11.30

Abstract

Converting boundary images to time-series makes it feasible to perform boundary matching even on a very large image database, which is very important for interactive and fast matching. In recent research, there has been an attempt to perform fast matching considering partial denoising by converting the boundary image into time series. In this paper, to improve performance, we propose an index-building method considering all possible arbitrary denoising parameters for removing arbitrary partial noises. This is a challenging problem since the partial denoising boundary matching must be considered for all possible denoising parameters. We propose an efficient single index-building algorithm by constructing a minimum bounding rectangle(MBR) according to all possible denoising parameters. The results of extensive experiments conducted show that our index-based matching method improves the search performance up to 46.6 ~ 4023.6 times.

윤곽선 이미지를 시계열로 변환하는 작업은 빠르고 상호작용 방식이 매우 중요한 대용량 이미지 데이터베이스에서도 윤곽선 매칭 수행을 가능 할 수 있게 만든다. 최근 연구에서는 윤곽선 이미지를 시계열 데이터로 변환하여 부분 노이즈제거를 고려하면서 빠르게 매칭을 수행하려는 시도가 있었다. 본 논문에서는 성능 향상을 위해 임의의 노이즈제거를 위해 임의의 모든 노이즈제거 매개 변수를 고려한 색인 구축 방법을 제안한다. 이는 가능한 모든 노이즈제거 매개 변수에 따른 부분 노이즈제거를 고려해야하기 때문에 어려운 문제이다. 본 논문에서는 다차원 색인인 R*-tree를 사용하여 모든 가능한 노이즈제거 매개 변수에 의한 최소 경계 영역(MBR)을 구성하여 효율적인 단일 생성 알고리즘을 제안한다. 다양한 실험 결과, 제안한 색인 기반 매칭 방법은 검색 성능을 최대 46.6 ~ 4023.6 배나 향상시킨다.

Keywords

References

  1. B.-S. Kim, Y.-S. Moon, and J.-G. Lee, "Boundary Image Matching Supporting Partial Denoising Using Time-Series Matching Techniques," Multimedia Tools and Applications, vol. 76, no. 6, pp. 8471-8496, Mar. 2017. https://doi.org/10.1007/s11042-016-3479-y
  2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, "The R*-tree: An Efficient and Robust Access Method for Points and Rectangles," in Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, Atlantic City, New Jersey, pp. 322-331, May. 1990.
  3. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, "Fast Subsequence Matching in Time-Series Databases," in Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, Minneapolis, Minnesota, pp. 419-429, May. 1994.
  4. R. Agrawal, C. Faloutsos, and A. Swami, "Efficient Similarity Search in Sequence Databases," in Proc. of the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, pp. 69-84, Oct. 1993.
  5. S. Belongie, J. Malik, and J. Puzicha "Shape Matching and Obj- ect Recognition Using Shape Contexts," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002. https://doi.org/10.1109/34.993558
  6. D. Zhang, and G. Lu, "Review of Shape Representation and Description Techniques," Pattern Recognition, vol. 37, no. 1, pp. 1-19, Jan. 2004. https://doi.org/10.1016/j.patcog.2003.07.008
  7. S. Parui, and A. Mittal, "Similarity-Invariant Sketch-Based Image Retrieval in Large Databases," in Proc. of the 13th European Conf. on Computer Vision, Zurich, Switzerland, pp. 6-12, Sep. 2014.
  8. J. Wang, W. Liu, S. Kumar, and S.-F. Chang, "Learning to Hash for Indexing Big Data-A Survey," in Proceedings of the IEEE, vol. 104, no. 1, pp. 34-57, Jan. 2016. https://doi.org/10.1109/JPROC.2015.2487976
  9. B.-S. Kim, Y.-S. Moon, M.-J. Choi, and J. Kim, "Interactive Noise-Controlled Boundary Image Matching Using the Time-Series Moving Average Transform," Multimedia Tools and Applications, vol. 72, no. 3, pp. 2543-2571, Oct. 2014. https://doi.org/10.1007/s11042-013-1552-3
  10. D. Nister, and H. Stewenius, "Scalable Recognition with a Vocabulary Tree," in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, New York, New York, pp. 2161-2168, Jun. 2006.
  11. J. T. Robinson, "The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes," in Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, Ann Arbor, Michigan, pp. 10-18, Apr/May. 1981.
  12. T. Bozkaya, and M. Ozsoyoglu, "Distance-based Indexing for High-Dimensional Metric Spaces," in Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, Tucson, Arizona, pp. 357-368, May. 1997.
  13. H. Duan, Y. Peng, G. Min, X. Xiang, W. Zhan, and H. Zou, "Distributed In-Memory Vocabulary Tree for Real-Time Retrieval of Big Data Images," Ad Hoc Networks, vol. 35, pp. 137-148, Dec. 2015. https://doi.org/10.1016/j.adhoc.2015.05.006
  14. J. Wang, J. Xiao, W. Lin, and C. Luo, "Discriminative and Generative Vocabulary tree: With Application to Vein Image Authentication and Recognition," Image and Vision Computing, vol. 34, no. 2, pp. 51-62, Feb. 2015. https://doi.org/10.1016/j.imavis.2014.10.014
  15. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision, 4th ed., Cengage Learning, 2014.
  16. W.-K. Loh, S.-P. Kim, S.-K. Hong, and Y.-S. Moon, "Envelope-based Boundary Image Matching for Smart Devices under Arbitrary Rotations," Multimedia Systems, vol. 21, no. 1, pp. 29-47, Feb. 2015. https://doi.org/10.1007/s00530-014-0386-9