DOI QR코드

DOI QR Code

Estimating Location in Real-world of a Observer for Adaptive Parallax Barrier

적응적 패럴랙스 베리어를 위한 사용자 위치 추적 방법

  • Kang, Seok-Hoon (Department of Embedded Systems Engineering, Incheon National University)
  • Received : 2019.09.09
  • Accepted : 2019.09.27
  • Published : 2019.12.31

Abstract

This paper propose how to track the position of the observer to control the viewing zone using an adaptive parallax barrier. The pose is estimated using a Constrained Local Model based on the shape model and Landmark for robust eye-distance measurement in the face pose. Camera's correlation converts distance and horizontal location to centimeter. The pixel pitch of the adaptive parallax barrier is adjusted according to the position of the observer's eyes, and the barrier is moved to adjust the viewing area. This paper propose a method for tracking the observer in the range of 60cm to 490cm, and measure the error, measurable range, and fps according to the resolution of the camera image. As a result, the observer can be measured within the absolute error range of 3.1642cm on average, and it was able to measure about 278cm at 320×240, about 488cm at 640×480, and about 493cm at 1280×960 depending on the resolution of the image.

이 논문에서는 적응적 패럴랙스 베리어 방식에서, 시청영역을 제어할 수 있도록 사용자의 위치를 추적하는 방법을 제안한다. 얼굴자세에 강건한 양안거리 측정을 위해, 형태모델과 랜드마크 기반인 CLM으로 자세를 추정한다. 카메라와의 상관관계로, 거리와 수평위치를 거리로 변환한다. 사용자의 눈의 위치에 따라 적응적 패럴랙스 베리어의 화소간격을 조정하고, 베리어를 이동해 시청영역을 조정한다. 이 논문에서는 60cm부터 490cm의 범위에서 사용자를 추적하는 방법을 제안하고, 카메라 영상의 해상도에 따른 에러, 측정 가능 범위, fps를 측정하였다. 그 결과, 사용자를 평균 3.1642cm의 절대오차 범위내로 측정 가능하였으며, 영상의 해상도에 따라 320×240에서 약 278cm, 640×480에서 약 488cm까지, 그리고 1280×960에서 약 493cm까지를 측정할 수 있었다.

Keywords

Acknowledgement

This work was supported by Incheon National University (International Cooperative) Research Grant in 2015 (2015-1675)

References

  1. Y. Meng, Z. Yu, C. Zhang, Y. Wang, Y. Liu, H. Ye, and L. L. Chen, Numerical simulation and experimental verification of a dense multi-view full-resolution autostereoscopic 3D-display-based dynamic shutter parallax barrier, Optical Society of America, vol. 88, no. 5, 2019.
  2. N. A. Dodgson, Autostereoscopic 3D displays. Computer (by the IEEE Computer Society). vol. Aug 1(8) , pp. 31-36, 2005. https://doi.org/10.1109/MC.2005.252
  3. J. P. McIntire, Paul R. Havig, Eric E. Geiselman, Stereoscopic 3D displays and human performance: A comprehensive review, Displays (Elsevier) 35 pp. 18-26, 2014. https://doi.org/10.1016/j.displa.2013.10.004
  4. A. Woods, Understanding crosstalk in stereoscopic displays. Keynote Presentation, Three-Dimensional Systems and Applications Conference, Tokyo, Japan, May. 19, pp. 19-21, 2010.
  5. S. Y. Kim, J. S. Lee, S. M. Choi, Crosstalk Reduction of Glasses-free 3D Displays using Multiview Image Processing, JOURNAL OF BROADCAST ENGINEERING, vol. 1, 66-75, 2016.
  6. D. F. DeMenthon, L. S. Davis, Model-based object pose in 25 lines of code, International journal of computer vision, Jun. 1;15(1-2), pp. 123-141, 1995. https://doi.org/10.1007/BF01450852
  7. S. Y. Yi, H. B. Chae, S. H. Lee, Moving parallax barrier design for eye-tracking autostereoscopic displays, 3D-TV Conference IEEE, The True Vision-Capture, Transmission and Display of 3D Video, May. 28, pp. 165-168, 2008.
  8. R. Ka, M. S. Hossain, M. A. Bhuiyan, T. Zhang, M. Hasanuzzaman, H. Ueno. Person to camera distance measurement based on eye-distance, Third International Conference on Multimedia and Ubiquitous Engineering, IEEE, Jun. 4, pp. 137-141, 2009.
  9. I. Konig, P. Beau, K. David. A new context: Screen to face distance, 8th International Symposium on Medical Information and Communication Technology (ISMICT), Apr. 2, pp. 1-5, 2014.
  10. S. Chen, X. Fang, J. Shen, L. Wang, and L. Shao, Single-image distance measurement by a smart mobile device. IEEE transactions on cybernetics. vol. 47, no. 12, pp. 4451-4462, 2017. https://doi.org/10.1109/TCYB.2016.2611599
  11. H. M. Eum, G. S. Lee, Sub-pixel Multiplexing for Autostereoscopic Full Parallax 3D, Journal of Korea Multimedia Society, vol. 12, pp. 2009-2015, 2017.
  12. T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham. Active shape models-their training and application. Computer vision and image understanding, vol. 61, no. 1, pp. 38-59, 1995. https://doi.org/10.1006/cviu.1995.1004
  13. J. M. Saragih, S. Lucey, and J. F. Cohn, Deformable model fitting by regularized landmark mean-shift. International Journal of Computer Vision, vol. 91, no. 2, pp. 200-215, 2011. https://doi.org/10.1007/s11263-010-0380-4
  14. M. T. Shoani, S. H. Amin, I. M. Sanhoury. Determining subject distance based on face size. 10th Asian Control Conference (ASCC), IEEE, May. 31, pp. 1-6, 2015.
  15. G. Chidichimo, A. Beneduci, V. Maltese, S. Cospito, A. Tursi, P. Tassini, and G. Pandolfi, 2D/3D switchable displays through PDLC reverse mode parallax barrier, LIQUID CRYSTALS, vol. 45, no. 13-15, pp. 2132-2138, 2018. https://doi.org/10.1080/02678292.2018.1501821
  16. H. Kakeya, K. Okada, H. Takahashi, Time-Division Quadruplexing Parallax Barrier with Subpixel-Based Slit Control, ITE Transactions on Media Technology and Applications, vol. 6, no. 3, pp. 237-246, 2018. https://doi.org/10.3169/mta.6.237
  17. B. Nadella, "Eys Detection and Tracking and Eye Gaze Estimation," Asia-pacific Journal of Convergent Research Interchange, HSST, ISSN : 2508-9080, vol. 1, no.2, Jun. (2015), pp. 25-41, [Online]. Available: http://dx.doi.org/10.21742/ APJCRI.2015.06.04.