DOI QR코드

DOI QR Code

50-GHz AWG Interrogation of a Multiple-FBG Temperature Sensor

50-GHz AWG를 이용한 다중 광섬유격자 브래그 파장 계측

  • Received : 2019.08.20
  • Accepted : 2019.09.26
  • Published : 2019.12.25

Abstract

We investigated an interrogation system for fiber Bragg gratings by using a 50-GHz 96-channel array waveguide grating. Linearity of the sensitivity (the wavelength shift in response to the change in strain or temperature) is achieved for a Bragg grating of sufficiently wide bandwidth. The present wavelength-monitoring system could measure the change in Bragg wavelength with a resolution of 0.01 nm, at intervals of 10 seconds. When this interrogation system was used for a linear array of 12 acrylaterecoated fiber gratings, the wavelength sensitivity changed from 0.018 nm/℃ to 0.01 nm/℃ when the operating temperature changed from -25℃ to 85℃.

96-채널 50-GHz 배열형 도파로격자를 사용하여 광섬유 브래그 격자의 브래그 파장 측정 시스템을 제작하였다. 충분히 넓은 대역폭을 갖는 광섬유격자의 브래그 파장은 변형 또는 온도의 변화에 따라 선형적으로 변화하는 것을 확인하였다. 제작된 파장 측정 시스템은 0.01 nm의 해상도를 가지며 10초 간격으로 브래그 파장을 측정한다. 12개의 직렬 연결된 아크릴레이트 재코팅된 다채널 광섬유격자들의 파장 이동을 동시에 측정하였고, 광섬유격자의 온도가 -25℃에서 85℃로 변화될 때, 파장 감도는 0.018 nm/℃에서 0.01 nm/℃까지 변화하였다.

Keywords

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377
  2. Y. Sano and T. Yoshino, "Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors," J. Lightwave Technol. 21, 132-139 (2003). https://doi.org/10.1109/JLT.2003.808620
  3. D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, "Extended range interrogation of wavelength division multiplexed fibre Bragg grating sensors using arrayed waveguide grating," Electron. Lett. 39, 1714-1716 (2003). https://doi.org/10.1049/el:20031093
  4. P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, "Performance analysis of the fiber Bragg grating interrogation system based on an arrayed waveguide grating," IEEE Trans. Instrum. Meas. 53, 1192-1196 (2004). https://doi.org/10.1109/TIM.2004.830780
  5. G. Fusiek, P. Niewczas, A. J. Willshire, and J. R. McDonald, "Nonlinearity compensation of the fiber Bragg grating interrogation system based on an arrayed waveguide grating," IEEE Trans. Instrum. Meas. 57, 2528-2531 (2008). https://doi.org/10.1109/TIM.2008.924899
  6. D. Robertson, P. Niewczas, and J. R. McDonald, "Interrogation of a dual-fiber-Bragg-grating sensor using an arrayed waveguide grating," IEEE Trans. Instrum. Meas. 56, 2641-2645 (2007). https://doi.org/10.1109/TIM.2007.908156
  7. H. Su and X. G. Huang, "A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing," Opt. Commun. 275, 196-200 (2007). https://doi.org/10.1016/j.optcom.2007.02.063
  8. H. M. Moon, S. C. Kwak, K. Im, J. B. Kim, and S. Kim, "Wavelength interrogation system for quasi-distributed fiber Bragg grating temperature sensors based on a 50-GHz array waveguide grating," IEEE Sensors J. 19, 2598-2604 (2019). https://doi.org/10.1109/jsen.2018.2889853
  9. A. Y. Choi and K. H. Youn, "Thermal and electrical properties of polyacrylate/carbon nanotube composite sheet," Elastomers Compos. 46, 231-236 (2011).