DOI QR코드

DOI QR Code

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization

  • Cha, Sung Ho (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
  • Received : 2019.07.29
  • Accepted : 2019.08.29
  • Published : 2019.12.25

Abstract

To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.

Keywords

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). https://doi.org/10.1126/science.1058847
  2. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007). https://doi.org/10.1126/science.1138746
  3. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). https://doi.org/10.1126/science.1125907
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008). https://doi.org/10.1103/PhysRevLett.100.207402
  5. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014).
  6. S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, "Sensing viruses using terahertz nano-gap metamaterials," Biomed. Opt. Express 8, 3551-3558 (2017). https://doi.org/10.1364/BOE.8.003551
  7. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  8. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express 16, 1786-1795 (2008). https://doi.org/10.1364/OE.16.001786
  9. J. Federici and L. Moeller, "Review of terahertz and subterahertz wireless communications," J. Appl. Phys. 107, 111101 (2010). https://doi.org/10.1063/1.3386413
  10. W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, "Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials," Opt. Lett. 37, 3366-3368 (2012). https://doi.org/10.1364/OL.37.003366
  11. J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech. 53, 1451-1461 (2005). https://doi.org/10.1109/TMTT.2005.845211
  12. S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn, "Sensitive detection of yeast using terahertz slot antennas," Opt. Express 22, 30467-30472 (2014). https://doi.org/10.1364/OE.22.030467
  13. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC Adv. 6, 69381-69386 (2016). https://doi.org/10.1039/C6RA11777E
  14. J. T. Hong, D. J. Park, J. H. Yim, J. K. Park, J. Y. Park, S. Lee, and Y. H. Ahn, "Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices," J. Phys. Chem. Lett. 4, 3950-3957 (2013). https://doi.org/10.1021/jz4020053
  15. J. T. Hong, S. W. Jun, S. H. Cha, J. Y. Park, S. Lee, G. A. Shin, and Y. H. Ahn, "Enhanced sensitivity in THz plasmonic sensors with silver nanowires," Sci. Rep. 8, 15536 (2018). https://doi.org/10.1038/s41598-018-33617-2
  16. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Effective sensing volume of terahertz metamaterial with various gap widths," J. Opt. Soc. Korea 20, 628-632 (2016). https://doi.org/10.3807/JOSK.2016.20.5.628
  17. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). https://doi.org/10.1126/science.1094025
  18. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3, 152-156 (2009). https://doi.org/10.1038/nphoton.2009.22
  19. Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, "A multi-functional plasmonic biosensor," Opt. Express 18, 9561-9569 (2010). https://doi.org/10.1364/OE.18.009561
  20. A. Berrier, P. Albella, M. Ameen Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. G. Rivas, "Detection of deepsubwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators," Opt. Express 20, 5052-5060 (2012). https://doi.org/10.1364/OE.20.005052
  21. T. Chen, S. Li, and H. Sun, "Metamaterials application in sensing," Sensors 12, 2742-2765 (2012). https://doi.org/10.3390/s120302742
  22. K. Colville, N. Tompkins, A. D. Rutenberg, and M. H. Jericho, "Effects of poly (L-lysine) substrates on attached escherichia coli bacteria," Langmuir 26, 2639-2644 (2010). https://doi.org/10.1021/la902826n
  23. P. Laurino, R. Kikkeri, N. Azzouz, and P. H. Seeberger, "Detection of bacteria using glyco-dendronized polylysine prepared by continuous flow photofunctionalization," Nano Lett. 11, 73-78 (2011). https://doi.org/10.1021/nl102821f
  24. S. J. Park, A. R. Kim, J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, "Crystallization kinetics of lead halide perovskite film monitored by in situ terahertz spectroscopy," J. Phys. Chem. Lett. 8, 401-406 (2017). https://doi.org/10.1021/acs.jpclett.6b02691
  25. H. S. Kim, S. H. Cha, B. Roy, S. H. Kim, and Y. H. Ahn, "Humidity sensing using THz metamaterial with silk protein fibroin," Opt. Express 26, 33575-33581 (2018). https://doi.org/10.1364/oe.26.033575
  26. D. J. Park, J. T. Hong, J. K. Park, S. B. Choi, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim, and Y. H. Ahn, "Resonant transmission of terahertz waves through metallic slot antennas on various dielectric substrates," Curr. Appl. Phys. 13, 753-757 (2013). https://doi.org/10.1016/j.cap.2012.11.018
  27. D. J. Park, S. J. Park, I. Park, and Y. H. Ahn, "Dielectric substrate effect on the metamaterial resonances in terahertz frequency range," Curr. Appl. Phys. 14, 570-574 (2014). https://doi.org/10.1016/j.cap.2014.01.015
  28. G. Zhao, M. T. Mors, T. Wenckebach, and P. C. M. Planken, "Terahertz dielectric properties of polystyrene foam," J. Opt. Soc. Am. B 19, 1476-1479 (2002). https://doi.org/10.1364/JOSAB.19.001476