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Abstract 
 

In this paper, we redesign, implement, and evaluate ShareSafe (Based on SecGraph), an 
open-source secure graph data sharing/publishing platform. Within ShareSafe, we propose 
De-anonymization Quantification Module and Recommendation Module. Besides, we model 
the attackers’ background knowledge and evaluate the relation between graph data privacy 
and the structure of the graph. To the best of our knowledge, ShareSafe is the first platform 
that enables users to perform data perturbation, utility evaluation, De-A evaluation, and 
Privacy Quantification. Leveraging ShareSafe, we conduct a more comprehensive and 
advanced utility and privacy evaluation. The results demonstrate that (1) The risk of privacy 
leakage of anonymized graph increases with the attackers’ background knowledge. (2) For a 
successful de-anonymization attack, the seed mapping, even relatively small, plays a much 
more important role than the auxiliary graph. (3) The structure of graph has a fundamental 
and significant effect on the utility and privacy of the graph. (4) There is no optimal 
anonymization/de-anonymization algorithm. For different environment, the performance of 
each algorithm varies from each other. 
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1.  Introduction 

Nowadays, various computer networks generate lots of graph data, which could be modeled 
by graph structure (e.g., social networks, Internet of Things (IoT) networks, mobile traces). 
These graph data carries much sensitive information about users/systems. However, for 
research or commercial purpose, the graph data is often transferred, shared, or published to 
the public, research community, or commercial partners. For example, network owners often 
share their graph data to third parties and researchers. Such sharing behaviors bring about 
serious privacy leakage. To protect the privacy of users/systems, it is crucial to prevent these 
sensitive information from leaking during the graph transferring, sharing or publishing 
process. 

To protect graph privacy, some anonymization techniques have been proposed to 
anonymize the graph, which could be categorized into six classes: Naive ID Removal, Edge 
Editing (EE) [1], k-anonymity based techniques [2]-[6], Cluster/Aggregation based 
techniques [7]-[9], Differential Privacy (DP) based techniques [10]-[13], and Random Walk 
(RW) based techniques [14]. When the graph data is anonymized, identities, name, and 
demographic information associated with individual node are suppressed. Such suppression 
is often done by removing “personally identifiable information”, which will destroy the 
unique graph structure of the individual node. In other words, these techniques protect graph 
privacy by perturbing graph structure while preserving as many graph utilities as possible. 

Although existing anonymization techniques can protect the graph data from a part of 
attacks, lots of new Structured-Basic De-anonymization attacks (DA, SDA), which the 
existing anonymization techniques cannot deal with, have emerged. 

Based on Narayanan and Shmatikov’s work [1], lots of new Structure-based 
De-Anonymization (SDA, when we use DA, if not specifically, it means SDA) attacks have 
emerged. Based on the background knowledge of attackers, these attacks could be classified 
into two categories: Seed-Free attacks, e.g., Pedarsani et al.’s attack [2], and Seed-based 
attacks, e.g., Narayanan and Shmatikov’s attack [1]. Both kinds of attacks de-anonymize 
graph nodes via unique structural characteristic of graph nodes. 

Despite lots of anonymization techniques and effective SDA attacks, considering existing 
anonymization techniques is not enough to defend modern SDA attacks. There still lacks a 
uniform and scalable platform for the graph privacy. Thus in [3], Ji et al. proposed SecGraph: 
a uniform and open-source Secure Graph data publishing platform. To the best of our 
knowledge, SecGraph is the first system that enables data owners to anonymize their graph 
data, measure the utility of data, and evaluate the vulnerability of data to SDA attacks. 

Although SecGraph is able to anonymize graph and measure the utility and privacy of the 
graph data, it still has several limitations, e.g., SecGraph lacks the evaluation and 
quantification of the anonymous graph data for privacy security. Due to the complexity and 
quantity of algorithms and parameters, users have to spend much time on selecting 
algorithms and setting parameters for an optimal algorithm and prameters. This is not 
conducive for the user to deploy convenient and efficient anonymous techniques on their 
graph data. Besides, although SecGraph could conduct a specific security assessment via 
SDA attacks, it still lacks a quantitative, general, and concrete approach for security and 
privacy evaluations. More importantly, in SecGraph [3], Ji et al. do not consider the 
influence of attackers’ background knowledge of seed mappings, but in reality attackers’ 
background knowledge of seed mappings have more than 40% influence for a successful 
attacks. Finally, in the evaluations of SecGraph, it does not consider the influence of privacy 
and utility caused by the structural differences between different graphs, which is crucial and 
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practical. In our experiments, the structure difference between different graphs could lead to 
more than 30% difference for the performance of privacy and utility for anonymized graph. 

Contribution. To address the above limitations in SecGraph, we design and implement the 
improved system of graph privacy: ShareSafe, which consists of five main modules: 
Anonymization Module (AM), Utility Module (UM), De-Anonymiza tion Module (DM), 
Security Quantification Module (SQM), and Recommendation Module (RM). Specifically, 
our main contribution is as follows. 

(a) Based on SecGraph, we propose and implement ShareSafe: a safe and efficient graph 
data sharing platform, which consists of five modules: AM, UM, DM, SQM, and RM. 
ShareSafe has redesigned and improved the original modules and added the SQM and RM. 
We update the AM and add the latest state-of-the-art anonymization techniques to the AM. 
ShareSafe adds the SQM which enables users to evaluate and quantify the security of graph 
data. Besides, ShareSafe adds the RM to provide users a friendly and efficient way to choose 
optimal anonymization techniques and parameters with the aspect of utility and security 
requirements. 

(b) We redesign the methodology of the experiments and re-evaluate the performance of 
utility and privacy leakage of the graph data. Besides, we evaluate the relationship among 
the graph structure, the utility of graph, and the graph privacy. We measure the SQM module 
on Facebook and Bitcoin datasets and compares the privacy leakage to realistic SDA attacks 
in the DM. With the SQM, We define and quantify the attacker’s background knowledge and 
analyze the importance of the background knowledge of adversary in a successful attack. 

(c) We have found that the success rate of attacks increases with the background 
knowledge of attackers. However, for the attacker, the help provided by the seed and the 
auxiliary is different from our intuitive understanding. A few seeds provide a 40% attack 
success rate increase far greater than the large overlapped auxiliary graph. Moreover, for 
different graph structures of data, the protection capabilities of various anonymization 
algorithms are quite different, and the leak of privacy of anonymized graph data reaches 
more than 30%. It shows that the modern anonymization algorithms are not specifically 
designed to protect certain fragile graph structures. The coarse-grained anonymization 
algorithm cannot meet the protection requirements of the graph data with a distinct graph 
structure. 

The rest of this article is organized as follows. In Section 2 we introduce SecGraph and 
survey the most related work. In Section 3 , we introduce the ShareSafe platform. In Section 
4 , we analyze the security and utility of graph data with the distinct graph structure. Finally, 
we conclude this paper in Section 5 . 

2.  SecGraph 
With the large number of graph data, which may contains lots of privacy information, Many 
anonymization and de-anonymization algorithms have been proposed. However, there still 
lacks a uniform platform for the privacy of the graph data. Under this background, Ji et al. 
proposed SecGraph [3]: a uniform and open-source Secure Graph data sharing/publishing 
platforme.  

2.1  System Overview 
SecGraph consists of three main modules: Anonymization Module (AM), Utility Module 
(UM), and De-anonymization Module (DM). We briefly summarize the design and function 
of each module as follows. 
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AM: the function of AM is to anonymize graph data and generate anonymized graph data. 
AM contains 11 algorithms, which covers all classes of state-of-the-art anonymization 
techniques. Specifically, the anonymization techniques implemented are naive ID Removal, 
two EE based algorithms Add/Del and Switch [4], three k-anonymity based algorithms k-DA 
[5], k-iso [6], k-automoriphism (k-Auto) [7], two cluster based algorithms named bounded 
t-means clustering [8-10] and union-split clustering [10], three DP based algorithms 
including Sala et al.’s scheme [11], Proserpio et al.’s scheme [12, 13], and Xiao et al.’s 
scheme [14], and RW based algorithm [15]. 

UM: UM evaluates graph data’s utilities between original and anonymized graphs 
concerning the 12 graph utilities and 7 application utilities, which, to the best of our 
knowledge, are enough to evaluate and characterize the usability of a graph. For more details 
of DM, please refer to [3] 

DM: DM is used to roughly evaluate the security of graph data by using the real-world 
SDA attacks. The effectiveness of anonymization techniques could also be reflected via the 
DA evaluations. In this module, SecGraph implements 3 seed-free and 12 seed-based SDA 
attacks. Specifically, the implemented SDA attacks are Backstrom et al.’s attacks (BDK-the 
initials of the authors) [16], Narayanan-Shmatikov’s attack (NS) [1], Narayanan et al.’s 
attack (NSR) [1], Nilizadeh et al.’s attack (NKA) [17] , Srivatsa-Hicks’s three attacks (DV, 
RST, and RSM, respectively) [18], Pedarsani et al.’s attack (PFG) [2], 
Yartseva-Grossglauser’s attack (YG) [19], Ji et al.’s two attacks (DeA and ADA, 
respectively) [20], Korula-Lattanzi’s attack (KL) [21], and Ji et al.’s attack (JLSB) [22].  

2.2  System Analysis 
SecGraph has made a great contribution to the development of the graph privacy. However, 
it still inevitably has some limitations. Although SecGraph has many effective utility 
evaluation methods and has considered many powerful SDA attacks, it could not 
fundamentally evaluate/quantify the the security of graph data. Also, SecGraph contains a 
large number of algorithms, which is both its advantages and disadvantages. The large 
number of algorithms makes SecGraph more versatile and more comprehensive, but it also 
makes it very difficult for users to use and limits its large-scale application in practice. There 
are also some shortcomings in the design of the experiment for SecGraph. Nowadays most 
DA attacks are based on graph structure and adversary’s background knowledge (especially 
seed mappings), which have a great impact on the success rate of SDA attacks. However, in 
the evaluation of SecGraph, the effect of the graph structure and seed mappings of graph 
data security were not considered. Modern SDA attacks are based on specific structural 
features, thus the relationship between the specific kind of utilities and the vulnerabilities of 
the graph data should also be considered. However, we do not see the relative evaluation and 
analysis in [3]. 

3.  ShareSafe 
To address the above limitations of SecGraph, we propose ShareSafe which includes five 
modules: AM, DM, UM, SQM, and RM. ShareSafe is a uniform and comprehensive graph 
data evaluating and sharing/publishing platform, which enables users to anonymize their 
graph data or evaluate the utility and security of raw/anonymized graph. We update the AM 
and add the state-of-the-art anonymization techniques that have emerged in recent years to 
the AM. Besides, unlike SecGraph, which consists of only three modules: AM, UM, and DM, 
we add two new modules namely Security Quantification Module (SQM) and 
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Recommendation Module (RM). For SecGraph’s lack of the approach to generally evaluate 
and quantify the security of raw/anonymized graph data, we propose and implement SQM, 
which enables users to understand the potentially vulnerable graph nodes against specified 
graph structures. For SecGraph, a large number of algorithms and parameter settings make it 
flexible and comprehensive, while sometimes, it seems too complicated and inefficient. Thus 
we propose and implement the RM, which facilitates users who do not possess the 
professional knowledge. The RM enables not only quick and easy selection of 
anonymization techniques, but also rapid and comprehensive evaluation and quantification 
of the utility and privacy of graph data. 

Particularly, since the need for utility evaluation of graph data is very scenario-specific 
and varies widely among different scenarios, it is almost impossible to add all possible utility 
metrics to the UM. We believe that the number of the commonly used utilities is limited, so 
we do not add new utilities to the UM. For modern SDA attacks, though many advanced 
structure-based de-anonymization attacks have been proposed in recent years, these attacks 
generally have little difference with the algorithms contained in the DM. The SDA attacks 
included in the DM are still very representative and powerful. Thus we have not added SDA 
attacks to DM yet. 

3.1  Updates of AM 
SecGraph was proposed by Ji et al. in 2015 and almost three years have passed since then. A 
large number of innovative graph data anonymization techniques have been proposed during 
this period. Therefore, the timely update to AM by adding new anonymization algorithms is 
very necessary. Due to time constraint, adding all of them to AM is almost impossible. At 
the same time, making choices among them is also very hard. Due to robustness and 
scalability, we choose the k-clique (k-cli) to be added to AM. k-clique could be classified as 
k-anonymization techniques, which protect the privacy of graph data by destroying the clique 
structure. 

3.2  Security Quantification Module 
3.2.1  Motivation 
The objective of SDA attacks is to map the nodes in the anonymized graph 𝐺𝐺𝑎𝑎 to the nodes 
in the auxiliary graph 𝐺𝐺𝑢𝑢 as accurate as possible. More specifically, the framework of SDA 
attacks consists of two phases: seed selection and mapping propagation. In seed selection 
phase, attackers identify a small number of seed mappings between 𝐺𝐺𝑎𝑎  and 𝐺𝐺𝑢𝑢  as 
landmarks to bootstrap the de-anonymization. In the mapping propagation phase, attackers 
de-anonymize 𝐺𝐺𝑎𝑎  through synthetically exploiting multiple graph structure similarities. 
Since the selection of seed mappings of most SDA attacks is almost the same, the essential 
difference in attacks lies in mapping propagation phase. While in mapping propagation phase, 
the most important and decisive role is combinations of graph structures. Therefore, our 
discussion of the graph privacy evaluation and quantification in SQM mainly focuses on the 
graph structure similarity measurements. 

Because SecGraph lacks a general graph data privacy evaluation and quantification 
approach, we propose Security Quantification Module (SQM), a module that evaluates and 
quantifies the security of raw/anonymized graph data and measures the effectiveness of 
anonymization techniques based on graph structure similarities. 
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3.2.2  SQM Overview 
Security Quantification Module evaluates the security of raw/anonymized graphs and 
measures the effectiveness of anonymization techniques based on the graph structure. The 
SQM evaluates the security of the graph data by assessing the nodes structural similarities 
between 𝐺𝐺𝑎𝑎 and 𝐺𝐺𝑢𝑢 and quantifies the degree of the node vulnerabilities. The SQM selects 
the nodes with the graph structure similarity scores greater than a threshold 𝜃𝜃  in 
anonymized graph as the potentially vulnerable nodes. Specifically, the SQM takes as input 
of two graphs 𝐺𝐺𝑎𝑎 = (𝑉𝑉𝑎𝑎 ,𝐸𝐸𝑎𝑎) and 𝐺𝐺𝑢𝑢 = (𝑉𝑉𝑢𝑢,𝐸𝐸𝑢𝑢), structure similarity threshold 𝜃𝜃, and the 
weight vector of structure similarities 𝑊𝑊. It outputs vulnerable node mappings 𝜇𝜇 between 
𝐺𝐺𝑎𝑎 and 𝐺𝐺𝑢𝑢. We use the ratio of the number of 𝜇𝜇 to the number of 𝑉𝑉𝑎𝑎 as a criterion for 
assessing and quantifying the security/privacy of the anonymized graph data. 
 
3.2.3  SQM Design and Implementation 
The SQM is very sensitive to crucial and vulnerable graph structures of nodes in graph data. 
Intuitively, SQM finds node mappings using the topological structure of the graph and the 
information obtained from previous node mappings. SQM self-iterates for the discovery of 
vulnerable nodes. During the i-th iteration, SQM starts with accumulated node mappings 𝜇𝜇𝑖𝑖 
between 𝐺𝐺𝑎𝑎 and 𝐺𝐺𝑢𝑢. It arbitrarily chooses an unmapped node 𝑣𝑣 in 𝑉𝑉𝑎𝑎 and computes the 
similarity score for each unmapped node 𝑢𝑢 in 𝑉𝑉𝑢𝑢. If the similarity score is above the 
threshold 𝜃𝜃, we make 𝑢𝑢 as a potential map to 𝑣𝑣. After all nodes left in 𝑉𝑉𝑢𝑢 are considered, 
we add the node 𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚 with the largest structure similarity score to the vulnerable node 
mappings 𝜇𝜇𝑖𝑖+1, then the next iteration starts. We describe the details as follows. 

Degree Centrality and Weight Degree Centrality. The degree centrality is defined as 
the number of neighbors of the node. For instance, the degree centrality of node 𝑣𝑣 ∈ 𝐺𝐺𝑎𝑎 is 
defined as 𝑁𝑁𝑎𝑎(𝑣𝑣) which denotes the degree of node 𝑣𝑣. Similarly, for node 𝑢𝑢 ∈ 𝐺𝐺𝑢𝑢, the 
degree centrality could be denoted as 𝑑𝑑𝑣𝑣 = 𝑁𝑁𝑢𝑢(𝑢𝑢). Since the graph data could be considered 
as a weighted graph, the weight attached on edges could provide extra information in 
characterizing the centrality of the node. For considering both the number of links with a 
node and the weight on edge, we employ the weighted degree centrality in Opsahl et al. 
[23]. Formally, for 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎, the weighted degree centrality is denoted as  

𝑤𝑤𝑑𝑑𝑣𝑣 = 𝑁𝑁𝑎𝑎(𝑣𝑣) ∗ (
∑  𝑣𝑣′∈𝑁𝑁𝑎𝑎(𝑣𝑣)𝑤𝑤𝑣𝑣,𝑣𝑣′

𝑁𝑁𝑎𝑎(𝑣𝑣) )𝛼𝛼 (1) 
 where 𝛼𝛼(0 ≤ 𝛼𝛼 ≤ 1) is a positive tuning parameter, which reflects the importance of 

the nodes with high degree. Larger 𝛼𝛼 implies that the nodes with high degree will be 
considered more important. 

Top-K Distance Centrality and Weighted Top-K Distance Centrality. The top-k 
distance centrality is defined as the Cosine distance between two top-k distance feature 
vectors. Specifically, For 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎 (resp., 𝑉𝑉𝑢𝑢 ), its top-k distance features 𝐷𝐷𝐷𝐷𝑠𝑠𝑘𝑘(𝑣𝑣)  is a 
k-dimensional vector (𝑑𝑑𝐷𝐷𝑠𝑠1𝑣𝑣 ,𝑑𝑑𝐷𝐷𝑠𝑠2𝑣𝑣 ,⋯ ,𝑑𝑑𝐷𝐷𝑠𝑠𝑘𝑘𝑣𝑣), where 𝑑𝑑𝐷𝐷𝑠𝑠𝑖𝑖𝑣𝑣(1 ≤ 𝐷𝐷 ≤ 𝑘𝑘) is the distance (the 
shortest path) from 𝑣𝑣 to the node with the 𝑘𝑘 − 𝑡𝑡ℎ largest degree in 𝐺𝐺𝑎𝑎 (resp., 𝐺𝐺𝑢𝑢). The 
definition of weighted top-k distance centrality is slightly different with top-k distance 
centrality, which uses the weighted shortest path as the 𝑑𝑑𝐷𝐷𝑠𝑠𝑖𝑖𝑣𝑣(1 ≤ 𝐷𝐷 ≤ 𝑘𝑘). 

Closeness Centrality and Weighted Closeness Centrality. The closeness centrality 
measures how close a node is to other nodes in a graph and is defined as the ratio between 
the number of graphs total nodes less one and the sum of its distance to all mapped nodes. 
Formally, for 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎, its closeness centrality 𝐶𝐶𝑣𝑣 is defined as  

𝐶𝐶𝑣𝑣 = |𝑉𝑉𝑎𝑎|−1
∑  𝑢𝑢∈𝑀𝑀𝑎𝑎 |𝑝𝑝𝑎𝑎(𝑣𝑣,𝑢𝑢)| (2) 
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 where 𝑀𝑀𝑎𝑎 is the mapped nodes of 𝐺𝐺𝑎𝑎 in each iteration and |𝑝𝑝𝑎𝑎(𝑣𝑣, 𝑢𝑢)| is the length of 
the shortest path from anonymized node 𝑣𝑣 to auxiliary node 𝑢𝑢. In particular, when the 
graph could be modeled as weighted graph, the |(𝑣𝑣,𝑢𝑢)| is the length of weighted shortest 
path from node 𝑣𝑣 to node 𝑢𝑢. 

Betweenness Centrality and Weighted Betweenness Centrality. The betweenness 
centrality quantifies the number of times a node acts as a bridge (intermediate node) along 
the shortest path between two other arbitrary nodes. Formally, for 𝑣𝑣 ∈ 𝑉𝑉𝑎𝑎, its betweenness 
centrality could be denoted as  

𝐵𝐵𝑣𝑣 =
∑

𝜎𝜎𝑖𝑖𝑖𝑖
𝑎𝑎 (𝑣𝑣)

𝜎𝜎𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑣𝑣≠𝑖𝑖

�|𝑉𝑉𝑎𝑎|−1
2

�
 (3) 

 where 𝐷𝐷, 𝑗𝑗 ∈ 𝑉𝑉𝑎𝑎 ,𝜎𝜎𝑖𝑖𝑖𝑖𝑎𝑎 = |𝑝𝑝𝑎𝑎(𝐷𝐷, 𝑗𝑗)| is the number of the shortest paths between 𝐷𝐷 and 𝑗𝑗 in 
𝐺𝐺𝑎𝑎 and  
𝜎𝜎𝑖𝑖𝑖𝑖𝑎𝑎 = |{|𝑝𝑝𝑎𝑎(𝐷𝐷, 𝑗𝑗)| & 𝑣𝑣 𝐷𝐷𝑠𝑠 𝑎𝑎𝑎𝑎 𝐷𝐷𝑎𝑎𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝐷𝐷𝑎𝑎𝑡𝑡𝑖𝑖 𝑎𝑎𝑛𝑛𝑑𝑑𝑖𝑖 𝑛𝑛𝑎𝑎 𝑝𝑝𝑎𝑎𝑡𝑡ℎ 𝑝𝑝(𝐷𝐷, 𝑗𝑗)}|  is the number of 

shortest paths between 𝐷𝐷 and 𝑗𝑗 in 𝐺𝐺𝑎𝑎 that 𝑣𝑣 lies on. For the case, when the graph could 
be modeled as weighted graph, the definition is lightly different for weighted betweenness 
centrality, in which the 𝑝𝑝(𝐷𝐷, 𝑗𝑗) denotes the weighted shortest path. 

In summary, we use the above centrality measurements as node topological structure 
similarity score, which could be formally denoted as  

𝑠𝑠(𝑣𝑣, 𝑢𝑢) = 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝐷𝐷𝑖𝑖𝐷𝐷(𝑣𝑣,𝑢𝑢) + 𝑤𝑤𝑑𝑑𝑖𝑖𝑑𝑑 ∗ 𝐷𝐷𝐷𝐷𝑠𝑠(𝑣𝑣,𝑢𝑢) +𝑤𝑤𝑐𝑐 ∗ 𝐶𝐶(𝑣𝑣,𝑢𝑢) + 𝑤𝑤𝑏𝑏 ∗ 𝐵𝐵(𝑣𝑣,𝑢𝑢)     (4) 
 where 𝑤𝑤𝑑𝑑𝑑𝑑𝑑𝑑,𝑤𝑤𝑑𝑑𝑖𝑖𝑑𝑑,𝑤𝑤𝑐𝑐 ,𝑤𝑤𝑏𝑏 ∈ [0,1]  are the values indicating the weights of degree 

similarity, top-k distance similarity, closeness similarity, and betweenness similarity, 
respectively. 

The user inputs the 𝐺𝐺𝑎𝑎,𝐺𝐺𝑢𝑢, the similarity threshold 𝜃𝜃, and similarity weights according to 
specific user scenarios. Then, the SQM calculates the structure similarity score 𝑠𝑠(𝑣𝑣,𝑢𝑢) 
between node 𝑣𝑣 ∈ 𝐺𝐺𝑎𝑎 and node 𝑢𝑢 ∈ 𝐺𝐺𝑢𝑢, and selects the node 𝑣𝑣 whose overall similarity 
𝑠𝑠(𝑣𝑣,𝑢𝑢) greater than the threshold value 𝜃𝜃. If there is more than one node 𝑢𝑢 matches the 
requirment, we choose the one with the highest similarity score and add 𝑣𝑣 to the vulnerable 
nodes list. When there is no more anonymized nodes or no match score larger than 𝜃𝜃, SQM 
stops the search. We consider these nodes are vulnerable in the user’s scenario. Finally, we 
use the proportion of these vulnerable nodes in the total anonymized graph nodes as the 
security evaluation result of the anonymized graph. 

3.3  Recommendation Module 
The Recommendation Module (RM) provides users a friendly and efficient way to choose 
the appropriate anonymization techniques. RM helps users find the optimal anonymization 
techniques for their requirements of usability and security expediently. Also, RM helps users 
understand the distribution of utilities and the potentially vulnerable nodes in the 
anonymized graph. We use anonymization techniques’ utility performance and security 
measurements of SQM as RM’s evaluation criterion. 

Specifically, through quantifying 12 graph utilities and seven application utilities, RM 
design and implement a fine-grained utility measurement metrics which enable users to 
flexibly and comprehensively customize scenario-specific utility measurement metrics. We 
use the evaluation of SQM as the security measure in RM. Thus an appropriate privacy 
protection level can be set according to the user’s expectation. Besides, a finer granularity of 
privacy protection can also be achieved. 
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  3.3.1  Architecture of RM 
 Fig. 1 shows the architecture of RM. Our focus is to provide a utility-preserved and 

multi-level privacy protected approach. The main function of the RM is to recommend the 
optimal anonymization techniques. If necessary, it can also perform data perturbation on 
users’ private data with user-specified privacy and utility concern level. 

RM takes two aspects of the data as inputs: raw/auxiliary graph for security evaluation and 
usability/privacy level controls. We discuss the details of each component of the RM as well 
as the interactions among them: 

 
Fig. 1. Recommendation Module. The solid line represents the interactions between modules and 

dotted represents the interactions between user and modules 
   

C-1. Utility Control Input provides user an interface to obtain user’s utility concern 
vector for user-specified utilities. As the graph has many utilities, we allow a user to specify 
the utilities that he concerns and determines the importance of each specified utility. 

C-2. Raw Graph obtains user’s graph data. E.g., mobile location network, social network, 
and email network, etc. 

C-3. Public Data obtains public knowledge associated with the user’s raw graph for 
security quantification. Specifically, this component collects the auxiliary graphs that have 
intrinsical overlaps with the raw graph.This component also collects seed mappings between 
the auxiliary graphs and the raw graph. The goal of this component is to provide a 
user-specified security evaluation scenario, which is used to customize evaluation options for 
subsequent security evaluation and protection. 

C-4. Security Control Input provides user an interface to obtain a user-specified security 
concern level. Specifically, C-4 provides two granularities of security control interface: 

Overall (Single-level) Security Control: Provides users a single input for overall security 
control. The user input a decimal to represent the overall security control level, in which 
larger values denote the stronger security requirements.  

Structure-based (Multiple-level) Security Control: Receives users’ privacy control 
inputs as a security concern level for each graph topological structure. Users specify the 
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SQM security threshold 𝜃𝜃 and the weight vector for four graph structure centralities. 𝜃𝜃 
represents the accuracy of privacy evaluation. When the overall privacy concern level is 
determined, the higher the threshold, the higher the user’s security requirement.  

Overall privacy provides a user with coarse-grained security control. Moreover, 
structure-based security control provides a user with fine-grained security control. Two 
different security control granularities provide a uniform and diverse protection approach for 
different scenarios. 

C-5. Utility Evaluation evaluates and quantifies the user-specified utilities.This 
component obtains the actual utility evaluation vector by comparing the anonymized graph 
and the raw graph on the user-specified utilities. This component integrates 12 graph utilities 
and seven application utilities in UM. Also, users can freely add their own utility 
measurements for a more functional customization utility evaluation. 

C-6. Anonymization provides a variety of user-selectable graph anonymization schemes 
for the raw graph. This component consists of 12 anonymization algorithms. The raw graph 
can be anonymized by a variety of selected anonymization algorithms, such as differential 
privacy, k-anonymity, Clustering, Random Walk, etc. The output of this component is 
anonymized graph and will be used for C-5 Utility Quantification and C-7 Privacy 
Quantification for further utility and security evaluation. 

C-7. Security Evaluation evaluates and quantify data privacy under the user specified 
security concerns. We use SQM to measure and quantify the security of the graph. 

C-8. Recommendation selects anonymization techniques and output recommendation 
results, using the results of C-1 utility control input, C-4 privacy control input, C-5 utility 
evaluation, and C-7 privacy evaluation. This component has two aspects: 

(1) Analyze the degree of utility preservation and security protection based on the results 
of the previous components: Comparing the C-1 and C-5’s results and find the 
anonymization techniques that satisfy the user’s utility concerns. Comparing the C-4 and 
C-7’s results and get the suitable anonymization techniques which meet the user’s privacy 
concerns. 

 (2) Combine the utility and security performance of the graph. Then it obtains 
anonymization techniques that satisfy both the user’s utility and security retention 
requirements. Also, C-8 presents the detail performance of utility and security of appropriate 
anonymization techniques to users.  

 
3.3.2  Design of RM 

In this subsection, we focus on the design of recommendation module. First, we introduce 
several general notations. Then we present the detailed design of the main components 
(Privacy Evaluation (C-7) and Utility Evaluation (C-5) components) in the RM. Notations 
We define notations based on in each component: 

C-1: We define a vector 𝐔𝐔 to denote the set of utility evaluation algorithms. User’s utility 
concern level is denoted as a vector 𝐮𝐮𝐫𝐫 ⊂ 𝐔𝐔 of size n. The 𝐷𝐷𝑡𝑡ℎ  entry 𝐮𝐮𝐫𝐫𝑖𝑖  in 𝐮𝐮𝐫𝐫  is a 
decimal between 0 and 1, meaning the preservation requirement for the 𝐷𝐷𝑡𝑡ℎ utility criteria 
in the UM. Larger 𝐮𝐮𝐫𝐫𝑖𝑖 indicate that the more 𝐷𝐷𝑡𝑡ℎ utility is needed to be preserved in 
anonymized data. 

C-2: User’s original graph is denoted as 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), which is a simple, undirected, and 
unlabelled graph. 𝑉𝑉 is the set of vertices and 𝐸𝐸 is the set of edges in 𝐺𝐺. We define 
𝑎𝑎 = |𝑉𝑉| to denote the number of vertices and 𝑖𝑖 = |𝐸𝐸| to denote the number of edges. We 
use {𝐷𝐷, 𝑗𝑗} to define an undirected edge between vertex 𝑣𝑣𝑖𝑖 to 𝑣𝑣𝑖𝑖, 𝑑𝑑𝑖𝑖𝐷𝐷(𝑣𝑣𝑖𝑖) to denote the 
degree of vertex of 𝑣𝑣𝑖𝑖. 
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C-3: We define user collected graph as 𝐺𝐺𝑎𝑎𝑢𝑢 = (𝑉𝑉𝑎𝑎𝑢𝑢,𝐸𝐸𝑎𝑎𝑢𝑢), which is a simple, undirected, 
and unlabelled graph. Noted that more intrinsical overlap between auxiliary and anonymized 
graph, more efficient for attacks and thus users will get a more powerful privacy guarantee. 
For seed based attacks, let 𝑆𝑆 = {(𝑠𝑠1, 𝑠𝑠′1), (𝑠𝑠2, 𝑠𝑠′2), … , (𝑠𝑠𝑘𝑘, 𝑠𝑠′𝑘𝑘)}. This priori knowledge can 
be used to conduct more confident ratiocination in seed based attacks. Here we only define 
some common and popular public information, but not public information. 

C-4: Algorithm-based privacy control is denoted as a vector 𝐃𝐃𝐫𝐫 of size k. The 𝐷𝐷𝑡𝑡ℎ entry 
𝐃𝐃𝐫𝐫𝑖𝑖 is a decimal number, representing when using the 𝐷𝐷𝑡𝑡ℎ attacks in the DM, only those 
nodes with similarity score greater than 𝐃𝐃𝐫𝐫𝑖𝑖 can be considered to be vulnerable. Overall 
privacy control is denoted as 𝑠𝑠, which means the proportion of nodes that are successfully 
identified in the anonymized graph. 

C-6: We define a vector 𝐀𝐀 of size l. The 𝐷𝐷𝑡𝑡ℎ entry 𝐀𝐀𝑖𝑖 denotes the 𝐷𝐷𝑡𝑡ℎ anonymization 
algorithm user chosen in the AM. Not specified, we define anonymized graph as 𝐺𝐺′ =
(𝑉𝑉′,𝐸𝐸′). We use 𝐺𝐺′𝑖𝑖 = (𝑉𝑉′𝑖𝑖,𝐸𝐸′𝑖𝑖) to denote the graph anonymized by the 𝐷𝐷𝑡𝑡ℎ anonymization 
algorithm integrated in the AM. 

  Design of Privacy Evaluation  
We consider using the security evaluation of SQM as our privacy notion, which not only 

provides a strong practical privacy guarantee but also performs better than traditional SDA 
attacks. Moreover, we offer both overall privacy control and fine-grained multiple level 
privacy control for different users and scenarios. 

There are two level of privacy guarantees. (i) The algorithm level control denotes the 
confidence of node mappings in specific graph topology structure level. (ii) The overall level 
control denotes the tolerance for the proportion of nodes on all graph topology structures. 

For the graph topology structure privacy control, We define the similarity function 
𝑆𝑆𝑖𝑖�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖�  to denote 𝐷𝐷𝑡𝑡ℎ  graph topology structure similarity function. Let 
𝑀𝑀𝑖𝑖𝑖𝑖 = {(𝑖𝑖1,𝑖𝑖′1), (𝑖𝑖2,𝑖𝑖′2), … , (𝑖𝑖𝑘𝑘 ,𝑖𝑖′𝑘𝑘)}  to denote the high risk of privacy node 
mappings found by 𝑗𝑗𝑡𝑡ℎ anonymization algorithm and 𝐷𝐷𝑡𝑡ℎ graph topology structure Thus 
𝑆𝑆 ⊂ 𝑀𝑀𝑖𝑖𝑖𝑖 

 
𝑀𝑀𝑖𝑖𝑖𝑖 = {(𝑖𝑖𝑘𝑘 ,𝑖𝑖′

𝑘𝑘)|𝑆𝑆𝑖𝑖(𝑖𝑖𝑘𝑘,𝑖𝑖′
𝑘𝑘) ≥ 𝐃𝐃𝐫𝐫𝑖𝑖 & 𝑖𝑖𝑘𝑘 ∈ |𝑉𝑉|,𝑖𝑖′

𝑘𝑘 ∈ |𝑉𝑉′𝑖𝑖|}        (5) 
 

In overall privacy level, we define a set 𝐴𝐴𝑑𝑑 to denote the anonymization techniques that 
meet user’s privacy requirements. And we have that,  

  

𝐴𝐴𝑑𝑑 = �𝐴𝐴𝑑𝑑𝑖𝑖 | ∀𝐷𝐷 ∈ [1,𝑘𝑘], �𝑀𝑀𝑖𝑖𝑖𝑖�
|𝑉𝑉| ≥ 𝑠𝑠, 𝐴𝐴𝑑𝑑𝑖𝑖 ∈ 𝐀𝐀�   (6) 
  

Finally, we output the 𝐴𝐴𝑑𝑑 to C-8. 
  Design of Utility Evaluation  
Considering that the user’s demand space is very extensive and free, we use the 

user-selectable utility vector 𝐮𝐮𝐚𝐚𝑖𝑖 to measure the utility preservation of anonymized data. 
We define a set 𝐴𝐴𝑢𝑢 ⊂ 𝐀𝐀  to denote the anonymization algorithms that meet user’s 
requirements of utility. And we have  

  
𝑨𝑨𝑨𝑨 = �𝑨𝑨𝑨𝑨𝒊𝒊 | 𝑨𝑨𝑨𝑨𝒊𝒊 ∈ 𝐀𝐀 & 𝐮𝐮𝐚𝐚𝒊𝒊 ≥ 𝐮𝐮𝐫𝐫𝒊𝒊� (7) 

  
 Finally, we output the 𝐴𝐴𝑢𝑢 to C-8. 
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In C-8, we output all results and recommend the anonymization algorithms ⊂ 𝐴𝐴𝑢𝑢 ∩ 𝐴𝐴𝑑𝑑: (i) 
anonymization algorithm and utility metric; (ii) anonymization algorithm and 
de-anonymization attack metric; (iii) Recommended Anonymization algorithms and their 
utility and privacy performance. 

4.  Experiment 
In this section, we present our design of experiment as well as the datasets used in our 
evaluation. We also present and analyze our experimental results in this section.  

4.1  Datasets 
We use two real-world datasets that capture different graph characteristic, which is obtained 
from the Facebook social network [24] and Bitcoin transaction network from an 
Over-The-Counter(OTC) marketplace [25], which have often been used in community 
detection [26, 27] and graph data privacy [28, 29] research. We choose these datasets 
primarily because of their unique characteristics: graph from Facebook includes more users 
and distinct communities than Bitcoin-OTC, which, on the other hand, has only a single 
community (i.e., the nodes of it are all around a center) and a lower average node degree. 
(Unless otherwise stated, in the article, we refer to both Facebook and Bitcoin/Bitcoin-OTC 
as the corresponding datasets used in the experiment.) 

  
Fig. 2. Graph Structure of Facebook Social Network    Fig. 3. Graph Structure of Bitcoin-OTC 

(node for user and edge for relationship) 
 
 

Facebook Social Network. The facebook dataset was collected from the survey 
participants using a Facebook app, which consists of 4039 user nodes, 88234 edges, and 
193 circles [24], and is divided into 10 ego networks. The vertices denote Facebook users, 
and an edge between two users represent the established friendship between them. 

Bitcoin-OTC. Bitcoin is a cryptocurrency that is used to trade anonymously over the web. 
The dataset was created on the who-trust-whom network of people who trade using Bitcoin 
on a platform called Bitcoin-OTC. Bitcoin-OTC includes 5881 user nodes and 35592 
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edges [25]. The vertices are Bitcoin-OTC users, and an edge denotes the transactions 
between two users. 

4.2  ShareSafe Analysis 
We evaluate ShareSafe by measuring the performance of different anonymization algorithm 
against UM, DM, and SQM. We evaluate the utility performance of anonymization 
algorithm with different strength of protection. Besides, we measure the privacy exposure 
risk by considering different Adversary’s priors in DM and SQM. We did not conduct a 
comparative experiment of SQM, because in addition to the SQM method, other graph 
privacy quantification methods are almost only theoretical methods. 

4.3  Anonymization Module vs Utility Module 
In this subsection, we measure each anonymization technique’s performance by comparing 
the original and anonymized graphs’ utility difference. Without loss of generality, we show 5 
representative anonymization techniques that covers all types of anonymization techniques: 
Switch [4], k-clique, union-split clustering [10], improved version of Sala et al.’s DP [11-13], 
and RW [15]. We first anonymize original graph by anonymization algorithm in the AM. 
Then we measure the usability for anonymized graph by evaluating the preservation of 
utilities in the anonymized graph. We use the utility metric which contains 21 kinds of utility 
similarities between original graph and anonymized graph to measure anonymized data’s 
usability. Specifically, when using Deg, RE, NR, RX, LCC, CC, BC, PL, JD, Infe, NC, and 
IM, we use cosine similarity to measure the distribution difference between original and 
anonymized graph. When using EV, SR, SD, and ED, we use proportion s to denote the 
difference between anonymized and the original graph. When using CD and MINS, we use 
Jaccard similarity. 

  

 
Fig. 4. Utility performance of Facebook 
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Fig. 5. Utility performance of Bitcoin-OTC 

 
 We follow the setting of original works for AM and UM evaluation and show 

experiment’s result in Fig. 4 and Fig. 5. 
In general, the datasets with different structure characteristics have a very different utility 

performance even under the same anonymization technique. Surprisingly, the same dataset 
shows little difference in the performance of most graph utilities, even under different 
anonymization techniques. Therefore, it is necessary to choose an appropriate anonymization 
algorithm for different datasets and application scenarios. Our result of experiment shows 
that the characteristics of the dataset have a huge impact on the utility preserving of 
anonymized graphs. 

Although the performance of different datasets has some similarities in the performance of 
the utility, there are still some significant differences. For example, although both Facebook 
and Bitcoin-OTC are underperforming on JD, it is clear that on Bitcoin, JD is less likely to 
be preserved, and Facebook can achieve almost twice the performance of Bitcoin. Besides, 
Facebook can hardly save PR under all anonymization algorithms, but PR is well preserved 
in Bitcoin. However, for the CD, Facebook saved much better than Bitcoin. 

No anonymization scheme is optimal in preserving all graph utilities. For instance, RW 
performs better than every other anonymization techniques, while it perform worse than 
𝑘𝑘-clique and Switch in ED. 

The same anonymization algorithm performs very differently on the utility under different 
datasets. For instance, RW destroyed PR on Facebook, but the preservation of PR on Bitcoin 
can be about twice. 𝐾𝐾-clique lost almost all CD on Bitcoin but lost only about 10% of the 
CD on Facebook. 

4.4  Anonymization Module vs De-Anonymization Module 
In this subsection, we evaluate the performance of DA attacks for their basic and realistic 
attack capabilities. Also, we measure the privacy risk of different anonymization schedules 
via DM and SQM. Considering the impact of the background/prior knowledge of the 
adversaries on the results of attacks, we measure DA basic and realistic attack capabilities 
under different attacker’s priors. Without loss of generality, we chose NS [1], DV [18], YG 
[19], ADA [20], KL [21], and JLSB [22] as attack algorithms to evaluate basic DA 
performance. The reason for choosing these algorithms has been described detailly in Ji et. al. 

 



5744                                             Tang et al. : ShareSafe: An Improved Version of SecGraph 

[3]. All these attacks are scalable/practical SDA attacks, and they could well represent the 
effects of the most advanced performance of DA attacks. 

  Adversarial Background Knowledge  
Generic definition of the adversarial priors enables the consideration of the attacks at 

multiple level of privacy leakage, which is modeled by the adversary’s background 
knowledge. We consider adversarial background knowledge from two aspects: Auxiliary 
Graph and Seed Mapping. 

Auxiliary Graph If adversaries know a partially overlapping graph 𝐺𝐺𝑢𝑢 with the original 
graph 𝐺𝐺 and the real identities of the 𝐺𝐺𝑢𝑢, they could utilize the overlapped graph 𝐺𝐺𝑢𝑢 to 
break the privacy of original graph 𝐺𝐺. We consider the 𝐺𝐺𝑢𝑢 ∩ 𝐺𝐺 = 𝐺𝐺𝑐𝑐𝑐𝑐𝑚𝑚 and 𝐺𝐺𝑐𝑐𝑐𝑐𝑚𝑚! = ∅ 
and |𝐺𝐺𝑐𝑐𝑐𝑐𝑚𝑚| = 𝛼𝛼 ∗ |𝐺𝐺| , where 𝛼𝛼 ∈ [0,1]  models the percentage of users as the Adv’s 
background knowledge for DA attacks to 𝐺𝐺. 

This prior knowledge represents that an adversary has access to the information of some 
users in the original graph and the corresponding subgraphs. E.g., most people will use 
Facebook (the social platform) and Twitter at the same time, so people’s social networks on 
both will have some overlaps. These overlaps could be used to conduct the DA attacks on 
Facebook or Twitter, which may lead to serious leakage of users’ privacy. 

Without loss of generality, we used the methodology of the previous works [2, 3, 5, 22, 23, 
25, 27]. During the generation of the auxiliary graph, we randomly sample the original graph 
with the probability s. s equals to the similarity 𝛼𝛼, reflecting the strength of the attacker’s 
knowledge of the auxiliary graph. 

Seed Mapping. Consider that some seed mappings are already known by attackers before 
the attack, in which these seed mappings could be used to iteratively de-anonymize 𝐺𝐺𝑎𝑎. This 
situation is very likely to happen in reality, because an attacker is possible to have 
determined part of the real mapping by being an internal employee of the network or some 
other means. 

In practice, it is difficult to model the node mapping as the prior knowledge of adversaries, 
so we take a more general form. We divide the auxiliary graph 𝐺𝐺𝑐𝑐𝑐𝑐𝑚𝑚 into three levels 
according to the node degree, and select the node mappings between 𝐺𝐺𝑎𝑎 and 𝐺𝐺𝑢𝑢 in each 
level respectively as attacker’s background knowledge for seed-based DA attacks. 

Experiment Methodology 
We design basic DA evaluation and Advanced DA evaluation. For both basic DA 

evaluation and advanced DA evaluation, the attackers’ background knowledge is almost the 
same. We randomly sample a graph with probability s from the original graph as the 
auxiliary graph and stratify the seed mappings from the 𝐺𝐺𝑐𝑐𝑐𝑐𝑚𝑚. The target graphs of the basic 
and advanced DA evaluation are different. Basic DA evaluation is used to evaluate DA 
performance of de-anonymization techniques. However, advanced DA evaluation is used to 
measure the performance of anonymization and de-anonymization techniques. 

In the basic evaluation for DA attacks, the methodology we employ is generally the same 
as in SecGraph [3]. We use the proportion of vulnerable nodes in anonymized graph to 
denote the privacy loss. 

For advanced DA evaluation, we use the DA attacks with various background knowledge 
to de-anonymize the anonymized data. First, we use six types of anonymization techniques 
to anonymize the data of Facebook and Bitcoin-OTC. Then, we build the adversarial 
knowledge by producing Auxiliary Graph and Seed Mapping for seed-based attacks. 
Finally, we use the SDA attacks in DM to evaluate the risk of privacy leakage of each 
anonymization techniques. 
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The auxiliary graph is obtained by randomly sampling original graph at different rate of s, 
and we stratify on the original graph and use the existing knowledge to get the seed 
mappings. Specifically, considering the strategy of seed generating which could greatly 
affect de-anonymization results, we employ degree stratified sampling as our seeds 
generating strategy, which is more practical to actual and general attack’s scenarios. Finally, 
we employ auxiliary graph and seed mappings as attackers’ priors to de-anonymize 
anonymized graph. 

Specifically, for seed-based attacks, we feed seed based SDA attacks with 30 
pre-identified seed mappings. For convenience of evaluation and comparison, we only show 
the highest success rate of six types of DA attacks with respect to the strength of protecting 
and anonymization schedule. 

We show the results of basic DA evaluation in Fig. 6 and Fig. 7. Besides, we show the 
results of advanced DA evaluation in Fig. 8 and Fig. 9. Moreover, based on the results, we 
have the following observations. 

Basic DA Evaluation 
For the Facebook dataset, which has multiple centers and high degree-concentration, 

except for NS, the success rates of the DA attacks are slightly different. The attack success 
rate of each algorithm increases steadily with the sampling rate. When the sampling rate of 
NS is lower than 0.75 in the auxiliary graph, the attack success rate is very low. However, 
when the sampling rate is greater than 0.75, its success rate is much higher than other attack 
algorithms, which could even reach about 0.9. 

For Bitcoin-OTC dataset, which is more central and with a lower average degree, the 
success rate of DA attacks is much lower than that in Facebook. Surprisingly, the NS which 
is best on Facebook performs worst on Bitcoin-OTC. Other attacks that use more complex 
features such as ADA, DV, JLSB, perform relatively well. When the overlap between the 
auxiliary graph and the original graph is greater than 0.75, the success rate of DV, ADA, 
and JLSB tend to stabilize at a higher level.cvccvcvcvcvcvcvcvcvcvcvvvvvvvvvvvvvv    

 
Fig. 6. Facebook Basic Privacy under the DA 
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Fig. 7. Bitcoin-OTC Basic Privacy under the DA 

  
 

Advanced DA Evaluation 
In the advanced DA evaluation, we only show the the highest privacy loss of 5 

anonymization algorithms for 6 SDA attacks with different attackers background knowledge. 
For the subgraph in Fig. 8 and Fig. 9, each line represent the risk of privacy leakage for an 
anonymization algorithm. 

   For Facebook, we find that with the increase of the sampling rate of the auxiliary 
graph, the privacy loss of each anonymization schedule with the DA attack is significantly 
increased. Because as the sampling rate increases, the auxiliary graph and the original graph 
have more structural similarity, which lead to a more successful attack. TIn general, the 
privacy loss of the anonymized graph gradually increases with the decrease of the protection 
strength. Combined with the observation in basic DA evaluation, it shows that most privacy 
protection algorithms can protect user privacy. When the sampling rate of the auxiliary graph 
is greater than 0.75, the protective effects of k-cli, Switch, and Union are significantly less 
than Random Walk (RW) and DP. In most of the cases, the protection of DP is the best. 

For Bitcoin, we also find that as the sampling rate of the auxiliary graph increases, the 
privacy loss of various anonymization algorithms also increases steadily and slowly. When 
the background knowledge of the attacker is fixed, the privacy loss of each anonymization 
algorithm is almost the same. Moreover, when the attacker’s priors gradually increase, the 
privacy loss of each anonymization schedule begins to show a significant difference. This is 
particularly evident when sampling rate of the auxiliary graph reaches 0.85 and 0.95. This 
means that when the attacker has insufficient background knowledge, there is almost no 
difference in protection algorithms. However, when the attackers have more background 
knowledge and are powerful enough, the protection algorithms begin to gradually reveal 
their intrinsical deficiencies. Interestingly, the privacy loss of DP and RW are the two 
highest algorithms when the background knowledge is weak. But when the attacker’s 
background knowledge is enhanced, both of them become the lowest privacy loss 
anonymization algorithms. 
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Fig. 8. Facebook Advanced Privacy under DA  

 
In general, Facebook and Bitcoin’s privacy loss has increased significantly with the 

increase of attackers’ background knowledge. Moreover, DP and RW are the best two 
anonymization protection schedules in most cases (at least very close to the best privacy 
protection algorithm). However, the privacy loss distribution of Facebook and Bitcoin-OTC 
is significantly different. Facebook’s overall privacy loss is much higher than Bitcoin-OTC. 
Moreover, the variance in privacy loss between Facebook is obviously much greater than 
that of Bitcoin-OTC. Besides, Facebook is more sensitive to the protection strength. 

4.5  Anonymization Module vs Security Quantification Module 
  In this subsection, We evaluate the performance of Security Quantification Module (SQM) 
with the AM. Besides, we analyze and compare the result of DM and SQM. We demonstrate 
the analysis as follows. 

 The privacy leakage of the anonymized graph gradually increases with the background 
knowledge of attackers increases. When the sampling rate of the auxiliary graph is large, the 
difference of the privacy leakage among anonymization algorithms begins to increase. This 
is mainly because the attacker’s attack intensity increases rapidly as the attacker’s available 
priors increase.     

With the attacker’s auxiliary graph sampling rate increases, the privacy leakage of the 
anonymized graph also begins to increase. But in general, as the sampling rate of the 
auxiliary graph increases, the differentiation of privacy leakage among anonymization 
algorithm comes earlier than in Facebook. When the same auxiliary graph sampling rate is 
fixed, attacks with the seed knowledge apparently perform much better than without seed 
knowledge. The attacks with seed mappings have the ability to carry more powerful SDA 
attacks, which results in the differentiation of the privacy leakage among anonymization 
algorithms to occur at smaller sampling rate. Compared with Fig. 8 and Fig. 9, the degree of 
privacy leakage of various anonymization algorithms greatly increase in seed based SDA. 
On average, 30 seeds, which is a very small number compared to the total number of graph 
vertex, are enough to increase the attacker’s success rate by more than 60%. This indicates 
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that the seed is far more important than the auxiliary graph within the SDA attacks.  

 
Fig. 9. Bitcoin-OTC Advanced Privacy under DA 

 
 For Bitcoin-OTC the overall privacy leakage of anonymization algorithms is small, 

which is around 22%. Similar to the previous observation, as the attacker’s auxiliary graph 
sampling rate increases, the privacy leakage of the anonymized graph also slowly increases. 
What is different from Facebook’s results is that the degree of privacy leakage of 
anonymization algorithms does not change significantly with the increase of auxiliary graph 
sampling rate. It always maintains stable in a widely differing situation. For example, 
Random has always been the anonymization algorithm that has the largest privacy leakage. 
DP has always been the smallest privacy leakage anonymization algorithm. Besides, the 
privacy leakage of DK, Switch, and Union have remained almost the same with different 
auxiliary graph sampling rates. Due to the same reason, the differentiation in anonymization 
algorithms is consistently large, because the attacks on Bitcoin-OTC are more likely to be 
successful. This is because the data of Bitcoin-OTC has a much smaller number of central 
nodes and the average degree is much smaller than that in Facebook. 

For the seed-based SQM evaluation, the overall privacy leakage of anonymization 
algorithms is about 35% lower compared to Facebook (Fig. 11), but has increased about 
40% compared with Fig. 12. This is consistent with the observation on Facebook. A small 
number of seeds provide huge advantages for SDA attack. Similar to Fig. 12, the privacy 
leakage of the anonymized graph begins to increase slowly with the attacker’s auxiliary 
graph sampling rate increases. When the sampling rate of the auxiliary graph increases, the 
differentiation of privacy leakage among anonymization protection algorithms does not 
change significantly. Random is still the anonymization algorithm with the highest privacy 
leakage. DP is the anonymization algorithm with the lowest privacy leakage. Besides, the 
privacy leakage of DK, Switch, and Union are almost consistent under different auxiliary 
graph sampling rates. The gap in privacy leakage among anonymization algorithms are 
consistently large and stable. Bitcoin has a much smaller number of central nodes and the 
average degree is much smaller than Facebook, which is easier to lanch SDA attacks. 
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Fig. 10. Facebook Privacy without seed 

 

 
Fig. 11. Facebook Privacy with seed 
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Fig. 12. Bitcoin-OTC Privacy without seed 

  
Fig. 13. Bitcoin-OTC Privacy with seed 

 
To sum up, the privacy leakage of the anonymization algorithm increases with the 

attackers’ background knowledge. The seed has a more important impacts than the auxiliary 
graph in SDA attacks. A few of seed mappings could increase the success rate about 30%. 
Besides, with the increase of the attacks’ intensity, the difference of privacy leakage of 
anonymization algorithms begins to appear. However, Facebook’s privacy leakage is much 
larger than Bitcoin-OTC. Facebook has more central nodes and a higher average degree of 
average. Thus Facebook is easier attacked by SDA attacks than Bitcoin-OTC.  
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5.  Conclusion 
In this paper, we redesign, implement, and evaluate ShareSafe (Based on SecGraph), an 
open-source secure graph data sharing/publishing platform. Within ShareSafe, we propose 
De-anonymization Quantification Module and Recommendation Module. Besides, we model 
the attackers’ background knowledge and evaluate the relation between graph data privacy 
and the structure of the graph. To the best of our knowledge, ShareSafe is the first platform 
that enables users to perform data perturbation, utility evaluation, De-A evaluation, and 
Privacy Quantification. Leveraging ShareSafe, we conduct a more comprehensive and 
advanced utility and privacy evaluation. The results demonstrate that (1) As the attackers’ 
background knowledge increases, the risk of privacy leakage of anonymized graph also 
increases. (2) For a successful de-anonymization attack, the seed mapping, even relatively 
small, plays a much more important role than the auxiliary graph. (3) The structure of graph 
has a fundamental and significant effect on the utility and privacy of the graph. (4) There is 
no optimal anonymization/de-anonymization algorithm. For different environment, the 
performance of each algorithm varies from each other. 
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