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Abstract 
 
In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access 
(NOMA) technology. In this scheme, two sources transmit packets with each other under the 
assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The 
cooperative relays exploit successive interference cancellation (SIC) technique to decode 
sequentially the data packets from received summation signals, and then use the digital 
network coding (DNC) technique to encrypt received data from two sources. A max-min 
criterion of end–to–end signal–to–interference–plus-noise ratios (SINRs) is used to select a 
best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to 
achieve exact closed-form expressions and then, the system performance of the proposed 
TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results 
discover that the system performance of the proposed TWDFNOMA protocol is improved 
when compared with a conventional three-timeslot two-way relaying scheme using DNC 
(denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using 
DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with 
amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed 
TWDFNOMA protocol achieves best performances at two optimal locations of the best relay 
whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. 
Finally, the probability analyses are justified by executing Monte Carlo simulations. 
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1. Introduction 

In recent years, wireless networks have become one of the most common communication 
methods due to its flexibility in different environments. With the development of smart 
devices, internet services and advanced multimedia applications such as mobile TV and online 
game have surged to increase amounts of wireless connections [1-5]. To advance the data rate 
and the consumed energy in the next generation of wireless communications, non-orthogonal 
multiple access (NOMA) has been recently received great considerations from the researches 
in wireless systems as a promising technology to improve spectrum efficiency. The power 
domain NOMA is one of the popular operation methods where multiple-access users are 
allocated with different transmit powers although the same time and frequency [1]. Transmit 
signals of source users are combined by superposition coding, and destination users apply 
successive interference cancellation (SIC) to subtract co-channel interferences and decode 
desired data [6]. The authors in [1, 6] showed that the NOMA technology helps to improve the 
system throughput and to decrease transmission latency in wireless communications. 

In order to deploy NOMA in a range of wireless systems, it is needed to combine with 
cooperative communications. In recent years, there are a lot of researches about cooperative 
communications to improve diversity capacity, and hence to increase the coverage and rate of 
wireless networks [7-10]. In the first timeslot, the sources broadcast their data to the relays 
while in the second timeslot, the relays assist the sources to transfer the received signals to the 
destinations by solutions as amplify-and-forward (AF) and decode-and-forward (DF) relaying 
techniques [11-14]. The opeartion of the DF technique is to decode data from received signals 
and forward re-coded data to the intended destinations whereas the relays in the AF technique 
only amplify the received data-carried signals and forward all to the destinations. As a result, 
the AF technique avoids the difficulty of the decoding operations but experiences from the 
noise addition caused by the amplification of both desired data-carried signals and noise. A 
combination of cooperative communications and NOMA is researched in [15-23]. J. B. Kim 
and I. H. Lee studied achievable average rate analyses of NOMA-applied relaying schemes 
[15]. S. Lee et al. in [18] investigated the system performance of NOMA-based AF relaying 
schemes in which the partial relay selection is used to obtain the best cooperative relay.  

Two-way relaying protocols in [24-26] are investigated to improve the spectral utilization 
efficiency and enlarge the radio coverage of the wireless networks in which the sources 
interchange data via middle relays. The physical network coding such as digital network 
coding (DNC) and analog network coding (ANC) is a modern signal combination to decrease 
the number of transmission timeslots in the two-way cooperation protocols. Therefore, the 
physical network coding enhances bandwidth exploitation efficiency. In the DNC, the 
cooperative relays mix received data from the sources in the first and second timeslot by XOR 
procedure before forwarding coded data back to these sources in the third timeslot [24-25]. 
Whereas the relays in the ANC only use two timeslots and simply amplify received 
data-carried signals of the sources in the first timeslot, then these sources decode the desired 
data from the amplified version at the remaining timeslot [26]. The authors in [27-32] 
researched the two-way DF relaying networks and analyzed the system performances in terms 
of bit error rate (BER) [27], symbol error rate (SER) [28], block-error-rate (BLER) [29], 
maximum achievable sum-rate [30], frame error rate [31] and (sum) outage probability [32]. 
Opportunistic relay selections have been considered in [31-32] with different operating 
conditions to achieve maximum end-to-end signal quality. P. N. Son and H. Y. Kong in [33] 
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investigated the performance improvements of two-way DF schemes by a combination of 
energy harvesting and DNC relays. A few researches for considering the NOMA technology 
two-way cooperative communications have been discussed to increase spectrum utilization 
efficiency [34-35]. However, the authors in these researches only use a relaying node to 
support packet transmission between two sources.  

Encouraged by the above discussed problems, in this paper, we propose a two-way 
cooperative NOMA scheme with multi DF relays to enhance the spectral utilization efficiency 
where the best relay owning a maximum end-to-end signal-to-interference-noise ratio (SINR) 
is selected (called as a TWDFNOMA protocol) to assist two sources and using the SIC and 
DNC technology solutions to decode and encode received data from these sources.  

The highlight contributions of our paper are given as the following results. Firstly, we 
propose the TWDFNOMA protocol where the best relay is found by the opportunistic relay 
selection method considering end-to-end SINRs. Secondly, exact closed-form expressions of 
(sum) outage probabilities are solved and then are validated by Monte Carlo simulations. 
Thirdly, the proposed TWDFNOMA protocol is better than a conventional three-timeslot 
two-way relaying scheme using DNC (called as a TWDNC protocol), a four-timeslot two-way 
relaying scheme without using DNC (called as a TWNDNC protocol) and a two-timeslot 
two-way relaying scheme with AF operations (called as a TWANC protocol). In addition, the 
system performance of the proposed TWDFNOMA protocol is improved when we have more 
cooperative relays.  

The organization of this paper is showed as follows. Section 2 describes a multi-relay 
two-way system model and operation principle of the proposed TWDFNOMA protocol; The 
exact closed-form outage probability expressions of the proposed TWDFNOMA protocol are 
performed in Section 3; the simulation results of the proposed TWDFNOMA protocol and 
existing comparison protocols TWDNC, TWNDNC and TWANC are presented in Section 4; 
and our conclusions are summarized in Section 5. 

2. System model 
Fig. 1 presents a system model of a two-way relaying NOMA scheme with multi-wireless 

DF relays denoted as Ri (i = 1, 2, . . ., M), called as the TWDFNOMA protocol. In this figure, 
two sources S1 and S2 transmit their packets x1 and x2, respectively, to each other through the 
intermediate relays Ri. To achieve optimal packet transmission, a best relay Rb using the 
NOMA technology is selected to exchange packets between two sources. We have some initial 
assumptions as 1) sources S1, S2 and relays Ri  are configured with a single antenna; 2) 
variances of zero-mean Additive White Gaussian Noises (AWGN) are identical, denoted as 
N0; and 3) all channels are suffered to flat and block Rayleigh fadings and do not change 
during one transmission timeslot.  

 
                              Fig. 1. System model of a two-way relaying NOMA scheme 
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In Fig. 1, 
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1 1( , )
iR Sh d and 

2 2( , )
iR Sh d  are Rayleigh fading channel 

coefficients and normalized distances of links S1-Ri, S2-Ri, Ri-S1 and Ri-S2 respectively. Hence, 
the random variables (RVs) 2| |

k i k iS R S Rg h= and 2| |
i k i kR S R Sg h=  have exponential distributions 

with the same parameter k kd βλ = , where β  is the path-loss exponent, and { }1,2k∈ . The 
cumulative distribution function (CDF) and probability density function (pdf) of the RVs 
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respectively.  
Prior to transmitting packets x1 and x2, the source node S1 establishes a connection phase to all 
relays and the source node S2 by the media access control (MAC) protocol [2-3].  Firstly, the 
source nodes S1 and S2 send in turn to request-to-send (RTS) messages to all relays Ri, 

{ }1,2,...i M∈ . Next, from receiving the RTS messages, each relay node Ri can estimate the 

k iS Rh , and then broadcasts a helper-ready-to-send (HTS) message which contains the 
k iS Rh  to 

the sources S1 and S2. After receiving the RTS and HTS messages, the source node S2 can 
estimate the 

2iR Sh and then sends a clear-to-send (CTS) message which comprises these fading 
channel coefficients. Relying on the reception of the messages HTS and CTS of all relays Ri 
and the source S2, the source S1 can estimate 

1iR Sh and detect the fading channel coefficients 

k iS Rh and
2iR Sh . Hence, the source node S1 knows all necessary channel state information to 

select a best relay Rb. Finally, the source node S1 broadcasts its CTS message to the source 
node S2 and the relays to inform the selected best relay and establish a two-way route from S1 
to S2 and vice versa through that the best relay in the transmission phase. 

The operation of the TWDFNOMA protocol occurs in two timeslots as follows. In the first 
timeslot, the sources S1 and S2 transmit their packets x1 and x2 to the best-selected relay Rb. In 
the last timeslot, with knowledge about the channel gains, the best relay Rb employs the 
NOMA technology to receive sequentially x1 and x2, and then mixing these packets x1 and x2 to 
create a coded packet x as 1 2x x x= ⊕  (XOR operation in the DNC) before transmitting the 
packet x back to the sources S1 and S2. 

In this paper, we compare the proposed TWDFNOMA protocol with three protocols studied 
in [14, 31-32]. The details are discussed as follows. The first protocol in [14], denoted as 
TWANC, considered the two-timeslot two-way relaying transmission with the ANC solution. 
The TWANC protocol also operates in two timeslots as the proposed TWDFNOMA protocol 
but a best relay chosen by making the most of end-to-end SINRs amplifies all received signals 
at the same time. The second protocol in [31], called as TWDNC, displayed the two-way 
relaying scheme with the DNC solution and three-timeslot operation. In the first and second 
timeslots, the source nodes S1 and S2 broadcast the packets x1 and x2 to all relays, respectively. 
In the third timeslot, a best relay selected based on the opportunity relay selection method 
transmits the mixed packet to the sources S1 and S2 by using the XOR method as the operation 
of the proposed TWDFNOMA protocol. The last comparison protocol in [32], denoted as 
TWNDNC, combines two one-way relaying transmissions to create the two-way relaying 
transmission between two source nodes. Therefore, the operation procedure of the TWNDNC 
protocol is considered into four timeslots. In the first and second timeslot, a packet x1 is sent 
from the source S1 to the best relay, and from the best relay to the source S2. In the third and 
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fourth timeslot, a packet x2 is transmitted in the opposite direction from the source S2 to the 
source S1 through another best relay. 

3. Outage Probability Analysis 
Without loss of generality, we assume that the transmit powers of the sources S1, S2 and the 

relays Ri are identical (denoted as P), and a node successfully decodes the desired packet if its 
achievable data rate is larger than or equal a target data rate Rt.  
At the first timeslot, the received signal at the relay Ri from the sources S1 and S2 are presented 
as 

              
1 21 2 ,

i i i iR S R S R Ry Ph x Ph x n= + +                                              (1) 

where
iRn refer to the AWGNs at the relays Ri with the identical variance N0, 

2 2
1 2{| | } {| | } 1E x E x= =  ( { }E χ  is written for the expectation procedure of χ  ).  

Based on researches about the NOMA with the SIC in [15-23], in a case 
1 2i iS R S Rg g> , 

firstly, the relay Rb decodes x1 in (1), then the component 
1 1iS RPh x in (1) will be subtracted to 

decode x2. In the first timeslot, the received SINRs 
1 1 2|i S R S Ri iS R g gg > and signal–to–noise ratios 

(SNRs) 
2 1 2|i S R S Ri iS R g gg > at the relay Ri for decoding the data x1 and x2 are obtained, respectively, 

as follows 
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where g is defined as a transmit SNR, 
0

P
N

g = . 

In the second timeslot, the received signals at the source nodes S1 and S2 are expressed as 
                                       

j i j jS R S Sy Ph x n= +  ,                                            (4) 

where 
jSn refer to the AWGNs at the source nodes Sj with the identical variance N0. 

The received SNRs 
1 1 2|i S R S Ri iR S g gg > and 

2 1 2|i S R S Ri iR S g gg > at the source nodes S1 and S2 for decoding 

the data x ( )1 2x x x= ⊕ are solved, respectively, as 
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In the proposed TWDFNOMA protocol, a best relay bR  is decided on a criterion as follows   

                   
{ } ( ) { }

( )1 2 1 21 2 1 2| |1,2,..., 1,2,...,
arg max min , arg max min , .

i S R S R i S R S R i ii i i i

i

b

b R S g g R S g g R S R Si M i M
w

w

R g gg g g g> >∈ ∈
= =

((((

((((((((

            (7) 

3.1 The outage probability of the source S1 in the case 
1 2b bS R S Rg g>  

The outage probability of the source S1 in the TWDFNOMA protocol occurs when the 
source S1 does not decode the data packet x2 from the source S2 in the case 

1 2b bS R S Rg g> , and is 
expressed as 

1 2 2 11 2 1 2 1 2 1 2| | | |

Pr1.1 Pr1.2

Pr[ ] Pr[ , ]
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(((((( ((((((((((((((

 ,      (8) 

where 
2 1 2|b S R S Rb bS R g gR > and 

1 1 2|b S R S Rb bR S g gR >  are achievable data rates of connections S2-Rb and 

Rb-S1, and are obtained as 

            ( ) ( )2 2 21 2 1 2| 2 | 2
1 1log 1 log 1
2 2b S R S R b S R S R bb b b bS R g g S R g g S RR gg g> >= + = + .              (9) 
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We note that 

2 1 2|b S R S Rb bS R g gg > in (9) and 
1 1 2|b S R S Rb bR S g gg > in (10) are obtained from (3) and (5), 

respectively. 
Base on [32, Eq. (51)], Pr1.1 in (8) is expressed by 

( )
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where 22 1tRθ = −  
To solve the Pr1.1 in (11), we use two Lemmas as following. 
Lemma 1: A relation of pdf of bω and pdf of iω  is obtained as 

                              ( )1 2
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Proof: See in Appendix A 
Lemma 2: The following expression is valid of 1.1

x
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Proof: Provided in Appendix B. 
The exact expression of the outage probability Pr1.1 is provided by the Theorem 1 as 
Theorem 1: The probability Pr1.1 is solved by the closed-form expression as 
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Proof: Substituting Lemma 1 and Lemma 2 into (11), Pr1.1 obtained as 
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By solving (15), the Theorem 1 is proven successfully. 
 
Similar as Pr1.1 in (11), the Pr1.2 in (8) is obtained as 
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In order to solve the probability Pr1.2 in (16), we also base on Lemma 1 and Lemma 3 where 
Lemma 3 is presented as follows: 
Lemma 3: A derivation of 1.2Ω versus x is given as 
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Proof: Given in Appendix C 
Theorem 2: A following closed-form expression is valid for the Pr1.2 probability:    
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Proof: Substituting Lemma 1 and Lemma 3 into Pr1.2 in (16), the probability Pr1.2 is 
expressed as 
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By solving (19) with only two single integrals, we prove the Theorem 2 successfully. 
From Theorem 1 in (14) and Theorem 2 in (18), the outage probability 

1 1 2| Pr1.1 Pr1.2
S R S Rb bS g gP > = +  is solved in the closed-form expression. 

 

3.2 The outage probability of the source S2 in the case 
1 2b bS R S Rg g>  

The outage probability of the source S2 in the TWDFNOMA protocol occurs when the 
source S2 does not decode the data x1 from the source S1 with the case 

1 2b bS R S Rg g> , denoted 
as

2 1 2| S R S Rb bS g gP > . Similar as the outage probability 
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where 
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As result in [32, Eq. (51)], Pr2.1 is shown as 
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Lemma 4: A derivation of 2.1Ω versus x is solved as 
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          ,         (24) 

where 
(1 )

a θ
θ g

=
−

 . 

Proof: as given in Appendix D 
Theorem 3: The probability Pr2.1 in (23) is obtained by the closed-form expression in two 
cases as 
-When 1θ ≥ :  

1 / 1
2 2

1
01 2 2 1

( 1)Pr 2.1 .
( 1)

tM
t
M

t

e M C
t

λθ gλ λ
λ λ λ λθ
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−
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∑                                    (25a) 

-When 1θ < :   
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1
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−
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−
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∑         (25b)   

Proof: Substituting Lemma 1 in (12) and Lemma 4 in (24) into (23), Theorem 3 is achieved as  
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+
× − ×

∫

∑ ∫

∑ 1 2( )( 1) /

0

, 1 0t x dxλ λ g θ
∞
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 − >


∫

(26) 

By solving (26), the Theorem 3 is obtained successfully.      
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Similarly, Pr2.2 is provided as following 
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1 2 2

0

, / ,
Pr

min , , / ( )
Pr 2.2 .
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b b b b
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((((((((((((((,

       (27) 

Lemma 5: A derivation of 2.2Ω versus x is shown in two cases as 

-When x θ≥ :   
2.2 0.

x
∂Ω

=
∂

                                                    (28) 

-When x θ< :   
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Proof: Given in Appendix E 
Theorem 4: The probability Pr2.2 is obtained by the closed-form expression in two cases as  
- When 1θ ≥ : 
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- When 1θ < : 
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∑

  (30b) 

Proof: Substituting Lemma1 in (12) and Lemma 5 in (29) into (27), Pr2.2 is addressed in two 
cases 1θ ≥ and 1θ <  as 
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-For the case 1θ ≥ : 
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By calculating (31a), Pr2.2 in (30a) is solved successfully. 
 
-For the case 1θ < : 
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∫
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      (31b) 

Through solving (31b), Pr2.2 in (30b) is proven successfully. 
Hence, from Theorem 3 and Theorem 4, the outage probability 

2 1 2| Pr 2.1 Pr 2.2
S R S Rb bS g gP > = + is 

calculated in the closed-form expression. 

3.3 The outage probabilities of the sources S1 and S2 in the remaining case 
2 1b bS R S Rg g> . 

Because the system model of the proposed TWDFNOMA protocol is symmetric, thus the 
outage probabilities of the sources S1 and S2 in the remaining case

2 1b bS R S Rg g> , denoted as 

1 2 1| S R S Rb bS g gP > and 
2 2 1| S R S Rb bS g gP > , are inferred respectively from the outage probabilities 

1 1 2| S R S Rb bS g gP > and 
2 1 2| S R S Rb bS g gP > of the sources S1 and S2 in the analyzed case 

1 2b bS R S Rg g>  by 

changing parameters as 1 2λ λ↔ . 
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From the expressions of the 
1 1 2| S R S Rb bS g gP > by (14) and (18), the outage probability 

1 2 1| S R S Rb bS g gP > of the source node S1 in the remaining case
2 1b bS R S Rg g> is obtained in the 

closed-form expressions with two cases as  
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                    (32a) 

-When 1θ <  :  
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In the same way, the outage probability 
2 2 1| S R S Rb bS g gP >  is quickly solved from 

2 1 2| S R S Rb bS g gP >  and 

is obtained in two cases as  
-When 1θ ≥ : 
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 (33a) 

 
-When 1θ <  : 
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 (33b) 

 
At this time, we have 

1 1 21 2 2 1 1 2| | |, ,
S R S R S R S R S R S Rb b b b b bS g g S g g S g gP P P> > > and 

2 2 1| S R S Rb bS g gP > on the hand and in 

order to analyze two-way relaying transmission between the sources S1 and S2, the sum-outage 
probability of the proposed TWDFNOMA protocol is inferred as following 
 

1 2 1 1 2 21 2 2 1 1 2 2 1| | | | .
S R S R S R S R S R S R S R S Rb b b b b b b b

sum
TWDFNOMA S S S g g S g g S g g S g gP P P P P P P> > > >= + = + + +        (34) 

 

4. Simulation Results 
 
In this section, we present analysis and simulation results of the outage performances of the 
proposed TWDFNOMA protocol. These results are also used to compare with the TWDNC 
protocol [31] , the TWNDNC protocol [32], and the TWANC protocol [14] . The simulation 
model is considered in the two-dimensional plane with the coordinates as S1 (0, 0), S2 (1, 0) 
and Ri (x, y), where 0 < x < 1 and { }1,2,...,i M∈ . Therefore, 2 2

1d x y= + and 
2 2

2 (1 )d x y= − + . For fair comparisons, the total energy of the protocols TWDFNOMA, 
TWDNC, TWNDNC and TWANC are identical, denoted as E. Based on the operation principle 
of the protocols TWDFNOMA, TWANC, TWDNC and TWNDNC which are described in the 
section 2, the transmit powers are addressed as 3TWDFNOMA TWANC TWDNC

EP P P T= = = , 

4TWNDNC
EP T= , where T is the period of a timeslot.  The establishment of transmit powers for 

fair comparisons between these protocols has been considered in [4-5]. Furthermore, the path-loss 
parameter β is set to 3 during simulation operations. 

Fig. 2 shows the sum-outage probability of the TWDFNOMA protocol versus E/No (dB) 
when the asymmetric network is considered with x = 0.2, y=0, and { }0.5,1tR ∈ (bit/s/Hz). In 
Fig. 2, the sum-outage probability of the proposed TWDFNOMA protocol decreases when the 
E/No increase. This can be explained by the fact that applying the NOMA technology and the 
opportunistic relay selection as in formulas (2), (3) and (7), the received SINRs and SNRs at 
the best relay Rb, the source nodes S1 and S2 achieve higher values at large E/No regions as 
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formulas (3), (5) and (6). Hence, the decoding capacities at the nodes S1, S2 and Rb become 
better at the larger E/No regions. Furthermore, the proposed TWDFNOMA protocol with Rt = 
0.5 (bit/s/Hz) is better than with Rt = 1 (bit/s/Hz). Finally, the theoretical analyses are valid by 
the suitability of the theoretical values and the simulation values. 
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Fig. 2. The sum-outage probability of the proposed TWDFNOMA protocol versus E/No (dB) when 
x=0.2, y=0, Rt is considered at 0.5 and 1 (bit/s/Hz) 

 

Fig. 3 presents the sum-outage probabilities of the protocols TWDFNOMA, TWANC,  
TWDNC and TWNDNC versus E/No (dB) when M=3, Rt = 1 (bit/s/Hz) and the asymmetric 
network is also considered with x = 0.2, y=0. From Fig. 3, the sum-outage probabilities decline 
in increasing E/No regions for the reason that of high transmit powers. Furthermore, the 
proposed TWDFNOMA protocol does better than the conventional protocols TWDNC, 
TWNDNC and TWANC because the proposed TWDFNOMA protocol combines 
technologies NOMA and DNC to cancel interferences from the stronger signals by the SIC 
solution and increase the bandwidth utilization efficiency by the XOR operation. We note that 
all protocols have the same energy for transmitting two signals. 
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Fig. 3. The sum-outage probabilities of the protocols TWDFNOMA, TWDNC, TWNDNC and 

TWANC as a function of E/No (dB) when M=3, x=0.2, y=0, Rt= 1 (bit/s/Hz). 

Fig. 4 presents the sum-outage probabilities of the protocols TWDFNOMA, TWANC, 
TWDNC and TWNDNC as a function of the locations x of the relays on x-axis when y=0.1, 
M=3, E/No = 7(dB), Rt = 1 (bit/s/Hz), and x is set to move between 0.1 and 0.9. As shown in 
Fig. 4, the TWDFNOMA protocol also has the smaller sum-outage probabilities when 
comparing with the protocols TWDNC, TWNDNC and TWANC. Particularly, the proposed 
TWDFNOMA protocol achieves best performances at two optimal locations x=0.3 and x=0.7 
whereas the midpoint x=0.5 is the optimal location of the TWDNC and TWNDNC protocols. 
Hence, the NOMA technology is an effective selection for the asymmetric two-way relaying 
networks, i.e. the optimal locations x=0.3 and x=0.7 of the cooperative relays.    
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Fig. 4. The sum-outage probabilities of all protocols as a function of the locations x of the relays on 

x-axis, when M=3, y=0.1,  E/No = 7 (dB),  Rt = 1 (bit/s/Hz). 
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Fig. 5 presents the sum-outage probabilities of the protocols TWDFNOMA, TWANC, 
TWDNC and TWNDNC as a function of the locations y of the relays on y-axis when M=3, 
E/No = 7(dB), Rt = 1 (bit/s/Hz), x is fixed at x=0.2 (the asymmetric two-way relaying networks), 
and y is set to move between 0.1 and 0.9. In Fig. 5, the proposed TWDFNOMA protocol 
achieves a better sum-outage performance than the existing protocols TWDNC, TWNDNC 
and TWANC. It can be seen that when the relays move further on the direction y-axis, the 
system performance of the protocols TWDFNOMA, TWDNC, TWNDNC and TWANC 
declines, and then goes towards the worst ranges (about 0.9y > ) because of decreasing 
cooperative operations. All protocols TWDFNOMA, TWANC, TWDNC and TWNDNC 
perform better when the best relay is set at near locations to the sources S1 and S2 (y=0.1) 
whereas x is fixed to 0.2. 
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Fig. 5. The sum-outage probabilities of the protocols TWDFNOMA, TWDNC, TWNDNC and 

TWANC versus the locations y of the relays on y-axis when x = 0.2, M=3, E/No = 7 (dB),  Rt = 1 
(bit/s/Hz). 

Fig. 6 and Fig 7 show analysis and simulation results of the protocols TWDFNOMA, 
TWDNC, TWNDNC and TWANC in which transmit powers of the nodes S1, S2 and relays Ri, 

{ }1,2,...,i M∈ are set to identical values, denoted as 

TWDFNOMA TWANC TWDNC TWNDNCP P P P P= = = = . The proposed TWDFNOMA protocol and the 
TWANG protocol use the least number of timeslots with only two timeslots whereas the 
protocols TWDNC and TWNDNC operate with three and four timeslots, respectively. The 
evaluations with identical transmit powers and different timeslots have been considered in 
[24], [32]. Fig. 6 presents the sum-outage probabilities of the protocols TWDFNOMA, 
TWDNC, TWNDNC and TWANC as versus P/No (dB) when x = 0.2, y=0, M=3 and 
Rt=0.5(bit/s/Hz). As observed from Fig. 6, the sum-outage performances of these protocols 
decrease when P/No increase and we can also see that the proposed TWDFNOMA protocol 
also achieves the smallest sum-outage probabilities. These results prove that the proposed 
TWDFNOMA protocol gains better performances whereas using the least number of timeslots 
(two timeslots). It is implied that the proposed TWDFNOMA protocol is essential to enhance 
the performance of the cooperative two-way scheme. Simulations results verify again the tight 
accuracy of the derived theoretical analyses.  
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Fig. 6. The sum-outage probabilities of the protocols TWDFNOMA, TWDNC, TWNDNC and 

TWANC versus P/No (dB) when x = 0.2, y=0, M=3, Rt=0.5(bit/s/Hz). 

Fig. 7 shows the sum-outage probabilities of the protocols TWDFNOMA, TWDNC, 
TWNDNC and TWANC  as a function of Rt when x = 0.2, y=0, M=3 and  P/No is fixed at 10 
(dB). From Fig. 7, the rates Rt increase, the system performance of all considering protocols 
decreases. In addition, the proposed TWDFNOMA protocol achieves better performances 
when comparing with the protocols TWDNC, TWNDNC and TWANC in the condition of 
identical transmit powers. In this case, we note that the proposed TWDFNOMA protocol only 
operates in the two timeslots. 
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Fig. 7. The sum-outage probabilities of the protocols TWDFNOMA, TWDNC, TWNDNC and 

TWANC versus Rt when x = 0.2, y=0, M=3, P/No = 10 (dB). 
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5. Conclusion 
In this paper, we proposed the two-way relaying scheme with multiple wireless relays in 
which the best relay is obtained by the opportunistic relay selection method, called as the 
TWDFNOMA protocol. The best relay applied the SIC to decode the sequence of the received 
signals and used the DNC solution to encrypt received data from two sources. We analyzed 
and evaluated the outage performances by the exact closed-form expressions. Simulation and 
analysis results presented distributions as follows. The proposed TWDFNOMA protocol 
achieves better performances when compared with the conventional three-timeslot two-way 
relaying scheme using DNC (denoted as the TWDNC protocol), the four-timeslot two-way 
relaying scheme without using DNC (denoted as the  TWNDNC protocol) and the 
two-timeslot two-way relaying scheme with AF operations (denoted as the TWANC protocol). 
The TWDFNOMA protocol reaches the smallest sum-outage probabilities when the 
cooperative relays form the asymmetric two-way relaying network and are moved to two 
optimal locations between two source nodes. Furthermore, the proposed TWDFNOMA 
protocol is improved as the increasing number of relaying nodes. Finally, the outage 
probability analyses in terms of the closed-form expressions are justified by executing Monte 
Carlo simulations.  

Appendix 

Appendix A: Verification of Lemma 1  

From denotation of iw in (7), the CDF of iw is obtained as 
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The CDF of bw is given from (7) as 
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The pdf of bw is inferred as 
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x
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 = = × − × ∂
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Hence, proof of Lemma 1 is solved completely. 

Appendix B: Proof of Lemma 2 

To solve Lemma 2, we calculate 1.1Ω in (11) as follows: 
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Applying the pdf of the RVs 
2S Rb

g , 
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g , and 2R Sb
g , and the CDF of the RVs 1S Rb
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Performing a derivation of 1.1Ω in (B.2) versus x, the proof of Lemma 2 is completed. 

Appendix C: Proof of Lemma 3 

From the definition of 1.2Ω in (16), 1.2Ω  is calculated as follows: 
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   (C.1) 
Firstly, we calculate the component 1.2.1Ω in (C.1) as 
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Next, the component 1.2.2Ω in (C.1) is calculated as 
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To solve 1.2.2Ω in (C.3), 1.2.2.1Ω need to calculate and the result is obtained as follows: 
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Substituting (C.4) into (C.3), 1.2.2Ω is obtained as 
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Substituting the pdf of the RV
2S Rb

g ,and the CDF of the RV 
1S Rb

g  into (C.5), 1.2.2Ω  is 
addressed in two cases as 
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Substituting (C.2) and (C.6) into (C.1), 1.2Ω is obtained as 
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Performing a derivation of 1.2Ω in (C.7) versus x, Lemma 3 is proven completely. 

Appendix D: Proof of Lemma 4 

To resolve Lemma 4, we calculate 2.1Ω in (25a) as        
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Firstly, 1φ in (D.1) is calculated as follows 
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Applying the pdf of the RV
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1 bS Rg  into (D.2), 1φ  is resolved as 
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Next, 2φ in (D.1) is obtained as 
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Substituting (D.2) and (D.4) into (D.1), 2.1Ω is obtained as follows: 
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Performing a derivation of 2.1Ω in (D.5) versus x, the proof of the Lemma 4 is solved 
completely. 

Appendix E: Proof of Lemma 5  

To resolve Lemma 5, we express 2.2Ω in (27) as                       
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Firstly, 3φ in (E.1) is calculated as 
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Applying the pdf of the RV 
2 bS Rg  and the CDF of the RV 

1 bS Rg  into (E.2), 3φ  is addressed as 
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Similarly, 4φ in (E.1) is solved as following 
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From (E3) and (E4), it is easy to show that when x θ≥ , 2.2Ω is not a function of x, then 

derivation of 2.2Ω versus x equals to 0. 

-When x θ< , substituting (E.3) and (E.4) into (E.1), 2.2Ω is obtained as follows: 
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Performing a derivation of 2.2Ω in (E.5) versus x, we solved the proof of the Lemma 5 
successfully. 
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