
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, Dec. 2019 5948
Copyright ⓒ 2019 KSII

Strengthening Packet Loss Measurement
from the Network Intermediate Point

Haoliang Lan1*, Wei Ding1 and YuMei Zhang2
1School of Cyber Science and Engineering, Southeast University

 Nanjing, 211189 – CHINA

[email: hllan@njnet.edu.cn]
2School of Big Data and Information Engineering, Guizhou University

Guiyang, 550025 – CHINA

[email: yumeiz@yahoo.com]

*Corresponding author: Haoliang Lan

Received September 4, 2018; revised November 18, 2018; accepted May 18, 2019;

published December 31, 2019

Abstract

Estimating loss rates with the packet traces captured from some point in the middle of the
network has received much attention within the research community. Meanwhile, existing
intermediate-point methods like [1] require the capturing system to capture all the TCP
traffic that crosses the border of an access network (typically Gigabit network) destined to or
coming from the Internet. However, limited to the performance of current hardware and
software, capturing network traffic in a Gigabit environment is still a challenging task. The
uncaptured packets will affect the total number of captured packets and the estimated
number of packet losses, which eventually affects the accuracy of the estimated loss rate.
Therefore, to obtain more accurate loss rate, a method of strengthening packet loss
measurement from the network intermediate point is proposed in this paper. Through
constructing a series of heuristic rules and leveraging the binomial distribution principle, the
proposed method realizes the compensation for the estimated loss rate. Also, experiment
results show that although there is no increase in the proportion of accurate estimates, the
compensation makes the majority of estimates closer to the accurate ones.

Keywords: Packet loss rate, Capture rate, Estimation, Network performance management,
Network measurement

http://doi.org/10.3837/tiis.2019.12.009 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5949

1. Introduction

It is now common for network operators to perform ongoing performance measurements,

the packet loss rate as a key performance metric is important for an ISP offering the services
specified in Service-Level-Agreement (SLA). Currently, researchers mainly achieve packet
loss estimation through active measurement or passive measurement. Active measurement [2]
is the use of probe tools (such as Ping, BADABING, etc.) to inject probe packets, e.g.,
Internet Control Message Protocol (ICMP) echo packets, into the network and measure how
many of them eventually reach the destination. The accuracy guarantee of the active
measurement lies in selecting proper measurement point and injecting probe packets in an
appropriate way without disturbing the target traffic. However, this is difficult in actual
implementation as the active measurement is usually rate-based and does not share the
sending pattern of the sender side. If the rate is too low, the real network performance may
not be measured, while if the rate is too high, the target traffic will be disturbed by the probe
traffic. Despite some random sampling models can reduce the effect of these disadvantages
to some extent [3] [4] [5], active measurement is still difficult to cope with problems like
discrete sampling nature of the probe process and dependence on the feedback loop.
Therefore, although active measurement is simple and feasible, researchers are increasingly
seeking to estimate packet loss through passive measurement.

All along, around passive packet loss measurement, research has focused on end-system
measurement [6] [7] [8] [9] [10]. End-system methods have a common feature, viz., they are
all based on the information available from the sender-side and/or receiver-side of a
connection, which determines that they can only be used to evaluate the end-to-end
performance of the individual connection. However, due to the traffic shaping and the events
violating network neutrality [11] [12] [13], different connections may experience vastly
different loss rates. From the perspective of network performance management [14], the
packet loss rate obtained by end-system method is not suitable for evaluating the overall
packet loss status of the monitored network. To this end, researchers explore to leverage the
packet traces captured from the network intermediate point (e.g., at the boarder of an access
network) to estimate packet losses. The intermediate-point methods can not only estimate the
loss rates of individual end-to-end connection and aggregated traffic, but can also distinguish
the packet losses within an ISP’s management domain and that in the outside Internet. All
these provide operators with the possibility to precisely grasp network performance to
achieve fine-grained network management [15].

As connection-oriented and reliable transport protocol, TCP has a natural response to
changes in network performance. Therefore, the research of intermediate-point methods has
always been oriented towards TCP flows. For instance, Mellia et al. [16] built a tool Tstat
for the first time to measure packet losses using TCP packet traces captured from the
network intermediate point. For a TCP flow, Tstat simply takes retransmissions at the

5950 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

measurement point as the lost packets to estimate its packet losses. In the following years,
due to its simplicity and practicability, Tstat is widely used in wired and wireless network
performance evaluation and analysis [17] [18] [19] [20]. Meanwhile, due to the widespread
application prospects of intermediate-point packet loss estimation, many scholars also
embarked on the follow-up study of [16]. Benko et al. [21] used the traces captured from
the network intermediate point to construct a series of heuristic rules to estimate packet
losses before and after the measurement point. Favi et al. [22] analyzed the performance of
the Benko-Veres algorithm [21] and found that the algorithm requires a considerable
number of packets and lost-events to converge to a reasonable and accurate estimate.
Jaiswal et al. [23] leveraged the information contained in the out-of-order packets to realize
the estimation for packet losses. Collange et al. [24] estimated packet losses before and
after the measurement point through the defined “Desequencements” data segment and
retransmission mechanism. Moreover, with the proposed method, they also analyzed the
relationship between packet loss rate and other traffic characteristics (e.g., connection time,
connection size and the number of connection interruptions, etc.). Cheng et al. [25]
extracted the information of fast retransmissions and timeout retransmissions contained in
the data stream to realize the estimation for packet losses before and after the measurement
point. With Retransmit TimeOut (RTO) and duplicate acknowledgments (ACKs), Ullah et al.
[26] filtered the different types of retransmissions to estimate packet losses in the middle of
the two ends. To troubleshoot packet losses, Cheng et al. [27] designed a lightweight
efficient diagnosis tool TCPBisector to estimate packet losses in the middle of the network
with relative error 3.5%-6.9%. In recent years, intermediate-point packet loss estimation has
been introduced into Software Defined Network (SDN) applications, i.e., they combined
with SDN to achieve packet loss monitoring [28] [29] [30], moreover, for good performance
monitoring, Hark et al. [31] also evaluated the performance of these techniques to take the
appropriate packet loss estimation technique in different network condition. In addition,
Andrzej et al. [32] realized the packet loss estimation at the intermediate router by
leveraging the stationary distribution of the queue size and the dropping function. While
Sierra et al. [33] estimated packet losses in the network intermediate point by proposing a
simplest approach of counting as a retransmission a packet whose sequence number is
smaller than the previous one. Compared with the rich papers in this area, we only listed a
part of them. The common feature of these methods is that they are all based on TCP packet
traces captured from the boarder of the monitored network (typically Gigabit network).
Therefore, the performance of the capturing system will directly affect the accuracy of such
methods in practical applications. Actually, limited to the performance of current hardware
(e.g., the processing power of the CPU) and software (e.g., the performance of the popular
operating systems), capturing network traffic in a Gigabit environment is still a challenging
task [34] [35] [36]. In other words, the capturing system is not able to capture everything.
For instance, according to Schneider et al’s evaluation for the performance of capturing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5951

system under different combinations of hardware and software [37], the capture rate cannot
reach 100% in most cases, and when the rate of traffic generation reaches 900 Mbit/s, even
the best-performing FreeBSD/AMD combination still exhibited 10% to 20% packet losses.
Although with the technological innovation of hardware and software, the capture rate has
been improved in recent years, the problem of uncaptured packets in Gigabit environment is
still inevitable as the rapid increment of the network traffic and transmission speed [38].

In our previous work [1], we enriched the body of intermediate-point estimation
techniques by proposing an Algorithm for Estimating Packet Losses on Network Path
(AEPLNP), which consists of two sub-algorithms. The first sub-algorithm estimates packet
losses before the capture point by building a series of heuristic rules that aim to accurately
reflect the state transitions of TCP congestion state machine in the sender-side associated
with packet losses. At the same time, the factors like packet reordering, repeated packet
losses, and so on were also considered to refine the first sub-algorithm in an effort to be
more precise in estimation. While the second sub-algorithm realizes the estimate for packet
losses after the capture point by distinguishing necessary retransmissions and spurious
retransmissions with the information contained in the ACK stream. Therefore, besides the
sender-side, the key for the second sub-algorithm is to leverage the state transitions in the
receiver-side to locate the spurious retransmissions. Similar with other intermediate-point
algorithms, for performance management reasons, the capture point of AEPLNP needs to be
as close as possible to the boarder of an ISP’s management domain (typically Gigabit
network), and needs to capture all the TCP traffic that crosses the entire border destined to or
coming from the Internet. Therefore, a problem, for AEPLNP, is that the TCP traffic cannot
be fully captured and the missing packet information will affect: 1) the total number of
captured packets; 2) the estimated number of packet losses before and after the capture point,
which eventually affects the accuracy of the estimated loss rates. In view of this, this paper is
intended to improve the robustness of AEPLNP in practical applications by detailing and
validating a method with an eye towards overcoming the impact of uncaptured packets.

For packet capture, previous work [39] [40] [41] mainly focuses on how to improve the
capture rate, and capture rate as an evaluation index is typically calculated by comparing the
captured traffic with the original traffic that generated by different traffic generators [42]
[43]. While about how to estimate the number of uncaptured packets with the captured
packets, we looked up domestic and foreign literatures and found no relevant research about
it. Therefore, in this work, we first explore leveraging the data and ACK streams to construct
a series of heuristic rules to estimate the total number of uncaptured packets in a TCP
connection. After that, we further leverage the estimated uncaptured packets combined with
the binomial distribution principle to complete the compensation for the estimated number of
packet losses before and after the capture point. Due to the impact of uncaptured packets, it
is difficult to get an accurate loss rate with the packet traces captured in the actual network.
Therefore in this paper, the simulations with practically relevant parameters are performed to

5952 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

evaluate the proposed method. And, the final experiment results show that although there is
no increase in the proportion of accurate estimates, the compensation makes the majority of
estimates closer to the accurate ones. In addition, what needs to be pointed out is that the
previous work mainly focused on the intermediate-point algorithm itself and did not provide
a solution to the problem of uncaptured packets in practical applications. From this angle, the
contribution of this work not only lies in improving the robustness of AEPLNP, but also lies
in providing a reference for other intermediate-point algorithms to overcome the impact of
the uncaptured packets.

The remainder of this paper is organized as follow. The compensation strategy is
introduced in Section 2. Next, Section 3 presents the algorithm for estimating the total
number of uncaptured packets in a TCP connection. Then, Section 4 describes the
compensation for the estimated number of packet losses. After detailing the proposed
method, Section 5 presents the validation and analysis for the proposed method. Finally,
Section 6 concludes the paper and gives the research forecast.

2. Compensation Strategy

Sever Client

InternetNetwork
A

Capture point “P”

Lbefore Lafter

sniffer sniffer

Fig. 1. Measurement scenario

The measurement scenario is shown in Fig. 1. As can be seen, the capture point “P” is
located at the boarder of the monitored network A and divides each network path crossing
through the boarder of A into two segments. The network path segments before “P” can be
used to evaluate the packet loss status within A, while the network path segments after “P”
can be used to evaluate the packet loss status in the outside Internet. Given that a TCP
connection without compensation is denoted with T, then its packet loss rate on network path
before “P” can be calculated as:

Lbefore_without =
Nbefore

Nbefore + Ncapture
 (1)

where Nbefore denotes the number of estimated packet losses of T before “P”, and Ncapture
denotes the number of data packets of T captured at “P”.

Similarly, for T, the packet loss rate on network path after “P” can be calculated as:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5953

Lafter_without =
Nafter

Nbefore + Ncapture
 (2)

where Nafter denotes the number of estimated packet losses of T after “P”.
It is obvious that the uncaptured packets will result in an underestimate for Ncapture.

Meanwhile, AEPLNP leverages the information extracted from the captured packets to
estimate Nbefore and Nafter. The uncaptured packets will also result in the loss of relevant
information and thus result in an underestimate for Nbefore and Nafter. Referring to equation (1)
and equation (2), the accuracy of Lbefore and Lafter will inevitably be affected. Therefore, to
further improve the robustness of the algorithm AEPLNP in the Gigabit network
environment, next the compensation for AEPLNP is detailed and validated. Concretely, the
compensation has the following two steps:
Step1: Based on the seen sequence number pattern and the information contained in the

ACK stream, the Algorithm for Estimating Uncaptured Packets (AEUP) consisting
of a series of heuristic rules is first constructed to estimate the total number of
uncaptured packets in a TCP connection, and thereby achieving the compensation
for Ncapture.

Step2: Combined with the binomial distribution principle, we complete the compensation
for Nbefore and Nafter with the estimated uncaptured packets in Step1.

3. Estimate the Number of Uncaptured Packets

In this section, the Algorithm for Estimating Uncaptured Packets (AEUP) is presented.

D1

D3D2

Se
qu

en
ce

 n
um

be
r

Time

D1 is not retransmitted
D3 is the retransmission of D2

Fig. 2. Sample uncaptured packet pattern

Fig. 2 shows the data sequence sample of a TCP connection appearing at the capture point.

Referring to Fig. 2 and analyzing the type of TCP packets appearing at the capture point, we
found that an uncaptured data packet will cause the following two cases:

5954 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

Case 1: If a data packet appears at the capture point only once (e.g., D1 in Fig. 2) and is
not captured, then unfilled hole will appear in the captured data sequence of a successfully
ended TCP connection.

Case 2: Again, if a data packet appears at the capture point more than once, i.e., it is
retransmitted (e.g., D2 in Fig. 2), in this case, even though it is not captured, we may not see
any visible hole in the captured data sequence, viz., the hole caused by the uncaptured packet
is refilled and becomes invisible (e.g., in Fig. 2, D2 is not captured, but D3 fills the hole
caused by the lost D2).

Given that the data sequence of a TCP connection is described with set S={<S1, L1 >, …,
<Sn, Ln>}, where ∀ i ∊ N, <Si, Li> denotes the ith data segment, Si denotes the sequence
number of <Si, Li>, Si≤Si+1, and Li denotes the byte length of <Si, Li>. Then the unfilled
hole and invisible hole in S are defined as follows.

Definition 1: (Unfilled hole) If Si+Li<Si+1, then an unfilled hole appears between <Si,
Li> and <Si+1, Li+1>, we denote this unfilled hole with Hunfilled_i=<Si+Li, Si+1>.

Definition 2: (Invisible hole) If <Si, Li> is not captured and appears at the capture point
more than once, in this case, we denote the invisible hole caused by the loss of <Si, Li> with
Hinvisible_i=<Si, Si+Li>.

According to the discussion above, if the actual number of data segments corresponding to
the unfilled holes and invisible holes in S can be determined, then the number of uncaptured
data packets can be calculated as:

Nuncaptured = Nunfilled + Ninvisible (3)
where Nunfilled and Ninvisible represent the number of data segments corresponding to unfilled
holes and invisible holes in S, respectively. Therefore, our goal is to seek Nunfilled and Ninvisible.

By definition, we can easily identity the unfilled holes in S by sorting the data packets in
ascending order according to the sequence number. However, we also note that the byte
range identified by the TCP sequence number is 0 to 232. Moreover, in a TCP connection, the
sequence number of the first data segment is random. Thus, the sequence number may
appear cyclic reuse during a TCP transfer, which can also cause unfilled hole in the data
sequence. In order to exclude the effect of sequence number cyclic reuse, the maximum
hole-size is set in this paper. Referencing the typical capture rate and default Maximum
Segment Size (MSS) (typically 1460 bytes), the maximum unfilled hole-size is set to:

Hmax _unfilled =
1

10
Ncap ∗ 1460 (4)

where Ncap is the total number of captured data packets corresponding to a TCP connection.
Although Nmax_unfilled does not necessarily exclude the effect of sequence number cyclic reuse
completely, it is expected to bound the error.

After identifying the unfilled holes in S, Nunfilled can be determined with the default MSS
and ACK stream.

For different TCP acknowledgement mechanisms, the form of ACK is different.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5955

Accordingly, different techniques will be used to determine Nunfilled in this paper. Currently
there are three kinds of TCP acknowledgement mechanisms:
 Standard Cumulative Acknowledgment (SCA): According to RFC5681 [44], it

cooperates with the basic TCP congestion control mechanisms to repair the packet losses
(e.g., Reno, NewReno, BIC and CUBIC, etc.). This mechanism only acknowledges the
data segments that arrive in order, i.e., the received segments that are not at the left edge
of the receive window cannot be acknowledged. Therefore, for TCP connection taking this
mechanism, extracting information contained in the ACK stream is not able to identify the
edges of out-of-order arrivals. In this case, the default MSS can be used to assist in
determining edges of uncaptured segments.

 Selective Acknowledgment (SACK): It combines with a selective retransmission policy
at the sender-side to repair the packet losses and reduce the spurious retransmissions. This
mechanism not only acknowledges the data segments that arrive in order, but can also
acknowledge the out-of-order segments that have arrived at the receiver and not covered
by the acknowledgement number. Therefore, for TCP connection taking this mechanism,
the information contained in the SACK blocks is beneficial for determining the edges of
partial out-of-order arrivals. More details about SACK are available from RFC2018 [45].

 Duplicate Selective Acknowledgment (D-SACK): This version, described in RFC2883
[46], is an extension to the SACK. It allows the receiver to inform the sender about
segments that have already arrived more than once. Therefore, a spurious retransmission
can be accurately identified with an ACK containing D-SACK information. As we know,
since the flaws in TCP’s retransmission schemes [47], spurious retransmissions are
inevitable in a number of cases. On the basis of SACK, the information in DSACK blocks
can not only specify the segments that arrive in order and out-of-order, but can also
specify the redundant segments caused by spurious retransmissions. Therefore, DSACK
combined with the various holes defined in this paper can comprehensively determine the
edges of the uncaptured segments.
For easy discussion, we redefine the ACK number here. For SCA, the ACK number refers

to acknowledgement number (hereinafter referred to as ack-number), while for SACK and
D-SACK, the ACK number includes ack-number, SACK block left edge (hereinafter
referred to as left-edge) and SACK block right edge (hereinafter referred to as right-edge).
For ack-number A, when we speak of it falls into the unfilled hole Hunfilled_i, we are referring
to that Si+Li<A≤Si+1, and for left-edge L, when we speak of it falls into the unfilled hole
Hunfilled_i, we are referring to that Si+Li≤L<Si+1, while for right-edge R, when we speak of it
falls into the unfilled hole Hunfilled_i, we are referring to that Si+Li<R<Si+1. According to
whether or not an unfilled hole has an ACK number to fall into, it can be divided into the
following categories.

Definition 3: (Pure hole) It has no any ACK number to fall into.
Definition 4: (Impurity hole) It has one or more ACK number(s) to fall into.

5956 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

Definition 5: (Overlapped hole) It has duplicate ACK number to fall into.
Indeed, by definition, the overlapped hole belongs to impurity hole. In order to facilitate

the calculation for Nunfilled, we further divide the impurity hole into disjoint categories.
Definition 6: (Normal hole) Among the impurity holes, except the overlapped holes, the

remaining are normal holes.
According to the discussion above, eventually the unfilled hole is divided into the

following three disjoint categories: pure hole, normal hole and overlapped hole.

Unfilled hole �
♦ Pure hole

Impurity hole �♦ Normal hole
♦ Overlapped hole

For pure hole, because it has no any ACK number to fall into, so AEUP uses the default
MSS to determine the number of data segments corresponding to the pure holes in S:

Npure = ��
Pi

1460
�

p

i=1

(5)

where p is the number of pure holes in S, and Pi is the byte length of the ith pure hole.
For normal hole, it has no any duplicate ACK number to fall into. Thus, we just need to

leverage the ACK numbers falling into it and the default MSS to determine the edges of the
data segments corresponding to it. Accordingly, AEUP first uses ACK numbers falling into a
normal hole to divide it into some small fragments. After the first round of dividing, if the
byte length of the divided fragment is greater than 1460, then it will be further randomly
divided into F smaller fragments whose byte length is greater than 1. F equals to the byte
length of the divided fragment divided by 1460. Eventually, AEUP uses the number of final
divided fragments as the number of data segments corresponding to the normal holes in S:

Nnomal = ��Fi+Bi���
Lj

1460
� − 1�

Fi

j=1

�
n

i=1

 (6)

where n is the number of normal holes in S, Fi is the number of fragments in the ith normal
hole after the first round of dividing, Lj is the byte length of the jth divided fragment
belonging to the ith normal hole after the first round of dividing, and Bi is a Boolean variable
that reports the situation of the ith normal hole after the first round of dividing.

Bi = �1:if the ith normal hole contains fragment that is greater than 1460 bytes
0:otherwise

For overlapped hole, compared with normal hole, the difference is that it has duplicate
ACK numbers to fall into. For these duplicate ACK numbers, what do they represent is
important for us to determine the number of data segments corresponding to the overlapped
holes in S (Noverlapped). It should be noted that the sole function of the right-edge in this
section is just to identify the edge of data segment, so when we discuss duplicate ACK
number, the duplicate right-edge is not included. Since the duplicate ACK number may be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5957

duplicate ack-number or duplicate left-edge, we discuss the overlapped holes for SCA,
SACK and D-SACK, respectively.

For SCA, about duplicate ack-number, we can prove the following:
Proposition 1: The duplicate ack-number is caused by either spurious retransmission or

packet reordering.
Proof: In order to let TCP sender sent the data segment D that is suspected to be lost as

soon as possible to avoid RTO expiration, the fast retransmission mechanism requires the
receiver to immediately generate an ACK for expecting D upon receiving an out-of-order
data segment. Therefore, if the received data is out-of-order, then a duplicate ack-number
will be generated. In contrary, if the received data is orderly and non-retransmitted, then it
will cause a new ACK. Else if the received data is orderly and necessary retransmission, it
will also cause a new ACK, but if it is orderly and spurious retransmission, the duplicate
ack-number will be generated since the buffer state of the receiver-side is not changed.

Therefore, for an overlapped hole, we first use the method dealing with the normal hole to
determine the number of non-retransmitted data segments in it. Then the number of spurious
retransmissions specified by some (not all) duplicate ACK numbers falling into the
overlapped hole can be determined after excluding the effect of packet reordering. As we
know, the essence that packet reordering can generate duplicate ACK is fast retransmission
mechanism. Again, sufficient packet reordering will cause fast retransmission (typically over
three duplicate ACKs). Therefore, for a duplicate ACK, if the number of times it appears at
the capture point is greater than or equal to 4, we assume it is caused by packet reordering.
Ultimately, for SCA, Noverlapped can be calculated as:

Noverlapped = ��Fi+Bi���
Lj

1460
� − 1�+Di − Ri

Fi

j=1

�
o

i=1

 (7)

where o is the number of overlapped holes in S, Di is the number of duplicate ack-numbers
falling into the ith overlapped hole, Ri is the number of duplicate ack-numbers caused by
packet reordering in Di.

For SACK, about duplicate ACK numbers, we can prove the following:
Proposition 2: The duplicate ack-number is caused by either spurious retransmission or

packet reordering, but the duplicate left-edge is caused by spurious retransmission.
Proof: Just like the proof for SCA, for SACK, a duplicate ack-number is caused by either

spurious retransmission or packet reordering. While for SACK block, the receiver always
acknowledges the most recently transmitted ones [48]. Therefore, if the left-edge is duplicate,
we can determine that it is caused by a spurious retransmission.

According to proposition 2, when determining Noverlapped, duplicate left-edge falling into
the overlapped hole can be directly used to confirm a spurious retransmission. While for
duplicate ack-number falling into overlapped hole, if the ACK where it is located doesn’t
contains duplicate left-edge, we can think it may be caused by a spurious retransmission and

5958 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

use it to determine a spurious retransmission, but need to exclude the effect of packet
reordering, viz., we require the number of times it appears at “P” is less than or equal to 3.
Therefore, for SACK, Noverlapped can be calculated as:

Noverlapped = ��Fi+Bi���
Lj

1460
� − 1�+Di+Ei

Fi

j=1

�
o

i=1

 (8)

where Di is the number of duplicate ack-numbers identifying spurious retransmissions and
falling into the ith overlapped hole, and Ei is the number of duplicate left-edges falling into
the ith overlapped hole.

Actually, for our work, the only valuable information that a duplicate ACK number can
provide is whether it specifies a spurious retransmission or not. In this case, for D-SACK, we
don’t take the duplicate ACK numbers into account when determining Noverlapped. But we use
the DSACK block to detect the spurious retransmission belonging to the overlapped hole,
viz., if the left-edge falling into the overlapped hole is a DSACK block left edge, we add the
number of spurious retransmissions belonging to this overlapped hole by 1.

Therefore, for D-SACK, Noverlapped can be calculated as:

Noverlapped = ��Fi+Bi���
Lj

1460
� − 1�+Ei

Fi

j=1

�
o

i=1

 (9)

where Ei is the number of DSACK block left edges falling into the ith overlapped hole.
Based on the discussion above, Nunfilled is calculated as:

Nunfilled = Npure + Nnormal + Noverlapped (10)
And, Ninvisible can be denoted as:

Ninvisible = Nrts − Ncap_rts (11)
where Nrts denotes the total number of retransmissions appearing at the capture point, and
Ncap_rts denotes the number of retransmissions actually captured by the capturing system.

According to equation (11), the key to obtain Ninvisible lies in determining Nrts. To this end,
we leverage the conclusion in [49] to approximate Nrts. For illustrative purposes, we
introduce the following metric:

Ratiodata/ack: the ratio of the number of data packets to the number of ACKs.
As Wu et al. [49] point out, for a TCP connection, Ratiodata/ack is about 2:1 when there is no

packet loss. On the contrary, Ratiodata/ack will change from 2:1 to 1:1 until the lost packets are
repaired. Therefore, we have:

�Nack = Nrts +
Nnon_rts

2

Nnon_rts = Nnon_unfilled + Nnon_cap

 (12)

where Nack is the number of ACKs, Nnon_trs is the number of non-retransmitted segments,
Nnon_unfilled is the number of non-retransmitted segments in unfilled holes and Nnon_cap is the
number of captured non-retransmitted segments. Solve equation (12), we have:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5959

Nrts = �Nack −
Nnon_unfilled + Nnon_cap

2
� (13)

Finally, the algorithm AEUP is given in Algorithm 1.

//Preprocessing stage
Pure_h = Normal_h = Overlapped_h = Invisible_h = 0
for pkt in trace of one TCP connection
 if pkt.is_Data() then
 H = pkt.form_Hole()
 else
 A = pkt.form_Ack()
 end if
end for
for hole in H
 if hole.pure_Check(A)
 Pure_h = hole.pure_Num()
 else if hole.normal_Check(A)
 Normal_h = hole.normal_Num(A)
 else
 Overlapped_h = hole.overlapped_Num(A)
end for
 Invisible_h = hole.invisible_Num(A)
Return Pure_h + Normal_h + Overlapped_h + Invisible_h

Algorithm 1: AEUP

4. Compensate the Estimated Number of Packet Losses
To simplify discussion, we introduce the following identifiers:
S: the uncaptured data segments in a TCP connection
Snon_r: the non-retransmitted data segments in a TCP connection
Sr: the retransmitted data segments in a TCP connection
Sb: the data segments that are related to packet losses before the capture point
Sn_b: the data segments that are not related to packet losses before the capture point
Sa: the data segments that are related to packet losses after the capture point
Sn_a: the data segments that are not related to packet losses after the capture point
Sb_s: Sb ∩ S
Sb_n: Sb ∩ ¬S
Sn_b_s: Sn_b ∩ S
Sn_b_n: Sn_b ∩ ¬S
Sa_s: Sa ∩ S
Sa_n: Sa ∩ ¬S
Sn_a_s: Sn_a ∩ S
Sn_a_n: Sn_a ∩ ¬S
Snon_s: Snon_r ∩ S

5960 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

Snon_ns: Snon_r ∩ ¬S
Sr_s: Sr ∩ S
Sr_ns: Sr ∩ ¬S
Pb: the probability that a segment in Snon_r belongs to Sb
Pb_s: the probability that a segment in Snon_s belongs to Sb_s
Pb_n: the probability that a segment in Snon_ns belongs to Sb_n
Pa: the probability that a segment in Sr belongs to Sa
Pa_s: the probability that a segment in Sr_s belongs to Sa_s
Pa_n: the probability that a segment in Sr_ns belongs to Sa_n
Nnon_s: card(Snon_s)
Nnon_ns: card(Snon_ns)
Nr_s: card(Sr_s)
Nr_ns: card(Sr_ns)
Nb_s: card(Sb_s)
Nb_n: card(Sb_n)
Na_s: card(Sa_s)
Na_n: card(Sa_n)

D

Snon_r

Sb Sn_b

Sn_b_n Sb_s Sb_n Sn_b_s

③

①+②

① Binomial distribution
② Maximum likelihood estimation

③ Large sample theory of maximum likelihood estimation

Pb_s Pb_nPb

Sr

Sa Sn_a

Sn_a_n Sa_s Sa_n Sn_a_s

③

①+②

Pa_s Pa_nPa

Fig. 3. Categories of data segments in a TCP transfer

With the defined identifiers, we divide the data segments in a TCP connection (denoted

with D) into several categories shown in Fig. 3. As can be seen, Nb_s and Na_s are the
compensation numbers of Nbefore and Nafter, respectively. Therefore, the goal becomes to seek
Nb_s and Na_s, and our methodology has the following two steps:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5961

Step1: Leverage binomial distribution and maximum likelihood estimation to get Pb_s and
Pb_n (Pa_s and Pa_n).

Step2: Let Pb_s=Pb_n (Pa_s=Pa_n) to obtain Nb_s (Na_s).
In Snon_ns, one segment either belongs to Sb_n or to Sn_b_n. We use a random variable X to

denote one segment belongs to Sb_n or to Sn_b_n. Let

X= �
0: denotes one segment belongs to Sb_n
1: denotes one segment belongs to Sn_b_n

 ,

then X ~ b (1, Pb_n). For a data flow, we take sample Snon_ns to observe how many segments
belong to Sb_n and how many segments belong to Sn_b_n. Here, Snon_ns is recorded as (x1, …,
xn), the probability of this observation event is:

𝑃𝑃�X1 = x1, … , Xn = xn;Pb_n� = �Pb_n
xi

n

i=1

∗ �1 − Pb_n�
1−xi

= Pb_n
∑ xi ∗ (1 − Pb_n)n−∑ xi (14)

According to the maximum likelihood principle, maximum likelihood principle we choose
Pb_n to make equation (14) maximum. Equation (14) can be further expressed as:

L�Pb_n� = Pb_n
∑ xi ∗ (1− Pb_n)n−∑ xi (15)

Equation (15) is transformed into the following form:

ln L�Pb_n� = ln�Pb_n
∑ xi ∗ (1− Pb_n)n−∑ xi� (16)

Derive the derivative of equation (16) with respect to Pb_n and let its result be zero:

∂ ln L�Pb_n�
∂Pb_n

=
∂ ln�Pb_n

∑ xi ∗ (1− Pb_n)n−∑ xi�
∂Pb_n

= 0 (17)

Solve equation (17) to get the maximum likelihood estimation of Pb_n:

Pb_n� = Pb_n� (x1,…,xn) =
∑ xi

n
 (18)

Next, we prove Pb_n� is unbiased:

 E�Pb_n� � = E �∑ xi
n
� = 1

n
E(∑ xi) = 1

n
nPb_n� = Pb_n� (19)

Thus, the unbiasedness of Pb_n� is proved. Similarly, Pb_s can be obtained.
As we know, Snon_s ⊂Snon_r , so Pb_s� =Pb . Again, since Snon_ns⊂ Snon_r and

card(Snon_ns)>card(Snon_r), according to the large sample theory of maximum likelihood
estimation, we have Pb�=Pb_n . Because Pb_s� =Pb and Pb�=Pb_n , so Pb_s� =Pb_n . After
obtaining Pb_s and Pb_n, Nb_s can be calculated as follows:

5962 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

⎩
⎪
⎨

⎪
⎧Pb_s =

Nb_s

Nnon_s

Pb_n =
Nb_n

Nnon_ns
Pb_s = Pb_n

yields
�⎯⎯�Nb_s= �

�Nuncaptured − Nr_s� ∗ Nbefore

Ncap − Ncap_rts
� (20)

where Nuncaptured denotes the number of uncaptured segments estimated by AEUP.
Similarly, Na_s can be calculated as follows:

⎩
⎪
⎨

⎪
⎧Pa_s =

Na_s

Nnon_s

Pa_n =
Na_n

Nr_ns

Pa_s = Pa_n

yields
�⎯⎯�Na_s= �

Nafter ∗ Nr_s

Ncap_trs − Nafter
� (21)

5. Validation and Analysis

node link agent

tcp sink

n0 n1 n2

Fig. 4. Simulation scenario
Table 1. Simulation parameters

Protocols

Proportion delay

Link rate

Packet size

Loss rates before/after “P” gradually from 0.1% to 10%

File size

uniformly distributed between 0.2 and 1.5 Kbytes

1 Mbps

10 ms

NewReno, SACK, D-SACK

100 Mbytes

Capture rates 99.9%, 99% and 90%

5.1 Validation for Compensation

To evaluate the proposed method, we implemented and tested it on packet traces obtained
from simulation. The simulation was carried out using Network Simulator (NS-2) [50]. The
simulated scenario, shown in Fig. 4, consists of three nodes: n0 (server), n1 (capture point)
and n2 (client), and the common simulation parameters are shown in Table 1. During
simulation, total 30 TCP transfers (10 for SCA, 10 for SACK and 10 for D-SACK) were
scheduled between the server and the client to transfer a fixed-size file. For each transfer,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5963

packets were dropped independently and with equal probability on network path segments
before and after “P”. During transfer, we first collected packet traces from n2 and then
randomly discarded some ones to simulate the situation that the capturing system is not able
to capture everything. This allows us to study how the proposed method behaves when
capturing system is not able to capture everything and experiences different capture rates. To
test the improvement effect of the proposed method on AEPLNP, we run AEPLNP with
Compensation (AEPLNP-C) and pure AEPLNP on the remaining traces, respectively.
Correspondingly, the relative error is used to evaluate the accuracy of the compensation, and
it is calculated as the absolute difference between the estimated loss rate and the accurate
loss rate divided by the accurate loss rate:

Errorrelative =
|Lestimated − Laccurate|

Laccurate
 (22)

where Lestimated denotes the estimated loss rate, and Laccurate denotes the accurate loss rate.
After the compensation, the estimated loss rates of a TCP connection on network paths

before and after “P” can be calculated as:

Lbefore_with =
Nbefore + Nb_s

Ncap + Nbefore + Nuncaptured + Nb_s
 (23)

Lafter_with =
Nafter + Na_s

Ncap + Nbefore + Nuncaptured + Nb_s
 (24)

Finally, the simulation results of the compensation are shown in Fig. 5. Specifically, the
first column consisting of Fig. 5(a), Fig. 5(c) and Fig. 5(e) shows the compensation results
for packet loss before the capture point, while the second column consisting of Fig. 5(b), Fig.
5(d) and Fig. 5(f) shows that for after the capture point. In each row, the compensation effect
under different capture rate can be seen. The first row is under capture rate of 99.9%, while
the second and the third are under capture rate of 99% and 90%, respectively. In the plots,
different colored lines represent the algorithms under different TCP acknowledgement
mechanisms, while the solid and dotted lines of the same color represent algorithms
AEPLNP-C and AEPLNP, respectively.

5.2 Result Analysis

As can be seen, on the whole, although there is no increase in the proportion of accurate
estimates, the compensation makes the majority of estimates closer to the accurate ones.
Comparing the graphs in the same column from top to bottom, we can see that with the
decline of the capture rate, AEPLNP-C is more and more superior to AEPLNP. Specifically,
when the capture rate is high, e.g., 99.9% of Fig. 5(a) and Fig. 5(b), the relative errors of
Lbefore_with and Lbefore_without are almost the same and stay below 10%, while the relative errors
of Lafter_with and Lafter_without are also almost the same and around 10%. In this case, the
compensation has no obvious effect on AEPLNP. With the further decline in capture rate,
e.g., 99% of Fig. 5(c) and Fig. 5(d), whether for Lbefore_with and Lbefore_without or Lafter_with and

5964 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

Lafter_without, their relative errors all increase slightly at the majority of the parameter space.
However, even in this case, AEPLNP-C still exhibits better performance compared with pure
AEPLNP. When the capture rate declines to a certain value, e.g., 90% of Fig. 5(e) and Fig.
5(f), the relative errors of Lbefore_without and Lafter_without are significantly higher than that of
Lbefore_with and Lafter_with, respectively. This illustrates that AEPLNP-C is more robust and
therefore significantly superior to pure AEPLNP in the face of lower capture rate. After
having a general description for the experiment results, we systematically analyze them from
the following three aspects.

(a) Impact of capture rate
From Fig. 5(a) → Fig. 5(c) → Fig. 5(e), and Fig. 5(b) → Fig. 5(d) → Fig. 5(f), we can see
that with the decrease in capture rate, the compensation appreciably improves the accuracy
of loss estimation. Indeed, with the decrease in capture rate, the loss rate will be
underestimated due to the increased uncaptured packets. In this case, the introduction of
Nuncaptured, Nb_s and Na_s made both the total number of captured packets and the estimated
number of packet losses closer to their respective actual values to improve the
underestimation obviously.

(b) Impact of packet loss rate
To fully verify the compensation effect, different packet loss rates were introduced. As can
be seen, especially in Fig. 5(e) and Fig. 5(f), the lower packet loss rates outperform the
higher ones in terms of compensation effect when capture rate is fixed. Actually, it can be
inferred that with the packet loss rate becomes higher, the more likely the uncaptured packet
contains the information indicating packet losses. When the loss of such information
increases as the increase of the packet loss rate, it will become difficult to conduct effective
compensation, which skews our compensation results.

(c) Impact of TCP acknowledgement mechanism
As we can see, especially from Fig. 5(e) and Fig. 5(f), on the whole, the compensation
achieved better performance on SACK and D-SACK transfers. This can be attributed to the
good performance of SACK and D-SACK in handling spurious retransmissions. D-SACK
accurately identifies spurious retransmissions with the help of DSACK blocks, while the
duplicate left edge also makes the SACK realize a good detection for spurious
retransmissions. On the contrary, for SCA, setting the threshold to 3 may be too strict to
effectively detect the spurious retransmissions. Moreover, for SACK and D-SACK, the
left-edge and right-edge also provide more information to help accurately determine the
edges of the uncaptured data segments.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5965

 Fig. 5. Simulation results of the compensation

5.3 Error Sources

For the compensation errors, we found the following three factors can account for to some
extent.

5966 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

 Strict segment size: As we know, the byte length of data segment is not always equal to
1460. If it is less than 1460, the calculation accuracy of Nunfilled will be affected.

 Packet reordering: Although rule was used to exclude the effect of packet reordering, but
the effect can only be limited and cannot be completely eliminated.

 Lost ACKs: If an ACK is lost, the data segment specified by this ACK may not be
identified.
According to the error sources listed above, one may be able to design a better algorithm

by being more careful. That is, the error sources listed above provide a direction for further
improving our algorithm. For instance, the calculation accuracy for Nunfilled can be further
improved by replacing the static segment size (1460 bytes) with a dynamic rule that depends
on the distribution of the segment size in a TCP data sequence. Similarly, using a dynamic
threshold obtained from the distribution of duplicate ACK numbers may also produce more
complete and effective rules for detecting packet reordering.

6. Conclusion
The purpose of our study is to explore how to measure packet loss from the network
intermediate point in a more robust way when facing with uncaptured packets that are
inevitable in actual network. To this end, based on our previous work [1], a method of
strengthening packet loss measurement from the network intermediate point is proposed and
validated in this paper. Through constructing a series of heuristic rules and leveraging the
binomial distribution principle, the proposed method realized the compensation for AEPLNP.
And, the experimental results show that when capture rate is higher, the estimation accuracy
of AEPLNP-C and AEPLNP is similar, but with the capture rate becomes lower, the former is
obviously superior to the latter. Besides the capture rate, we also compared AEPLNP-C and
AEPLNP by considering the packet loss rate and TCP acknowledgement mechanism.
Similarly, although AEPLNP-C exhibited different performance under different packet loss
rates and acknowledgement mechanisms, it is still clearly preferred over AEPLNP at the
majority of parameter space. In addition, while AEPLNP-C enables relatively superior
accuracy when facing with uncaptured packets, its accuracy is still expected to be further
improved by overcoming the effect of the error sources listed in subsection 5.3.

Acknowledgements

This work was sponsored by the National High-Tech R&D Program of China (863)
(2015AA015603); the National Nature Science Foundation of China (61602114).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5967

References

[1] H. Lan, W. Ding and Y. Zhang, “Passive overall packet loss estimation at the border of an
ISP,” KSII Transactions on Internet and Information Systems, vol. 12, no. 7, pp. 3150-3171, July,
2018. Article (CrossRefLink).

[2] F. E. Bustamante, D. Clark and N. Feamster, “Workshop on tracking quality of experience in the
Internet: summary and outcomes,” ACM SIGCOMM Computer Communication Review, vol. 47,
no.1, pp. 55-60, January, 2017. Article (CrossRefLink).

[3] J. Sommers, P. Barford, N. Duffield and A. Ron, “A geometric approach to improving active
packet loss measurement,” IEEE/ACM Transactions on Networking, vol. 16, no. 2, pp. 307-320,
April, 2008. Article (CrossRefLink).

[4] H. X. Nguyen and M. Roughan, “Rigorous statistical analysis of internet loss measurements,”
IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp. 734-745, June, 2013.
Article (CrossRefLink).

[5] C. Kocak and K. Zaim, “Performance measurement of IP networks using two-way active
measurement protocol,” in Proc. of the 8th International Conference on Information Technology,
pp. 249-254, May 17-18, 2017. Article (CrossRefLink).

[6] S. Basso, M. Meo, A. Servetti and J. C. De Martin, “Estimating packet loss rate in the access
through application-level measurements,” in Proc. of the 2012 ACM SIGCOMM workshop on
Measurements up the stack, pp. 7-12, August 17-17, 2012. Article (CrossRefLink).

[7] S. Basso, M. Meo, A. Servetti and J. C. De Martin, “Strengthening measurements from the edges:
application-level packet loss rate estimation,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 3, pp. 45-51, July, 2013. Article (CrossRefLink).

[8] Dolk Victor and Maurice Heemels, “Event-triggered control systems under packet losses,”
Automatica, vol. 80, no. 13, pp. 143-145, June, 2017. Article (CrossRefLink).

[9] H. Fan, H. Wang and Y. Li, “Data-driven packet loss estimation for node healthy sensing in
decentralized cluster,” Sensors, vol. 18, no. 2, pp. 320, January, 2018. Article (CrossRefLink).

[10] Z. Hu and Q. Zhang, “A new approach for packet loss measurement of video streaming and its
application,” Multimedia Tools and Applications, vol. 77, no. 10, pp. 11589-11608, May, 2018.
Article (CrossRefLink).

[11] T. B. Ma. Richard and V. Misra, “The public option: a nonregulatory alternative to network
neutrality,” in Proc. of the Seventh COnference on emerging Networking EXperiments and
Technologies, 2011. Article (CrossRefLink).

[12] A. Antonopoulos, E. Kartsakli, C. Perillo and C. Verikoukis, “Shedding light on the internet:
stakeholders and network neutrality,” IEEE Communications Magazine, vol. 55, no. 7, pp.
216-223, July, 2017. Article (CrossRefLink).

[13] P. Hosein, W. Choi and W. Seok, “Detecting network neutrality violations through packet loss
statistics,” in Proc. of the 17th Asia-Pacific Network Operations and Management Symposium,
pp. 404–407, August 19-21, 2015. Article (CrossRefLink).

http://dx.doi.org/doi:10.3837/tiis.2018.07.010
http://dx.doi.org/doi:10.1145/3041027.3041035
http://dx.doi.org/doi:10.1109/TNET.2007.900412
http://dx.doi.org/doi:10.1109/TNET.2012.2207915
http://dx.doi.org/doi:10.1109/ICITECH.2017.8080008
http://dx.doi.org/doi:10.1145/2342541.2342545
http://dx.doi.org/doi:10.1145/2500098.2500104
http://dx.doi.org/doi:10.1016/j.automatica.2017.02.029
http://dx.doi.org/doi:10.3390/s18020320
http://dx.doi.org/doi:10.1007/s11042-016-3566-0
http://dx.doi.org/doi:10.1145/2079296.2079312
http://dx.doi.org/doi:10.1109/MCOM.2017.1600417
http://dx.doi.org/doi:10.1109/APNOMS.2015.7275352

5968 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

[14] B. Cho, K. J. Kim and J. W. Chung, “CBR-based network performance management with
multi-agent approach,” Cluster Computing, vol. 20, no. 1, pp. 757-767, March, 2017.
Article (CrossRefLink).

[15] S. Okwir, S. S. Nudurupati, M. Ginieis and J. Angelis, “Performance measurement and
management systems: a perspective from complexity theory,” International Journal of
Management Reviews, vol. 20, no. 3, pp.731-754, July, 2018. Article (CrossRefLink).

[16] M. Mellia, A. Carpani and R. L. Cigno, “TStat: TCP STatistic and analysis tool,” in Proc. of the
International Workshop on Quality of Service in Multiservice IP Networks, pp. 145-157,
February 24-26, 2003. Article (CrossRefLink).

[17] A. Finamore, M. Mellia, M. Meo, M. M. Munafò and D. Rossi, “Live traffic monitoring with
Tstat: capabilities and experiences,” in Proc. of the 8th International Conference on
Wired/Wireless Internet Communications, pp. 290-301, June 01-03, 2010.
Article (CrossRefLink).

[18] Y. A. Limanto, J. Andjarwirawan and H. N. Palit, “Visualisasi bandwidth usage untuk
universitas kristen petra menggunakan tools TSTAT,” Jurnal Infra, vol. 4, no. 1, pp. 28-34, 2016.
Article (CrossRefLink).

[19] Femminella, Mauro, Matteo Pergolesi and Gianluca Reali, “Performance evaluation of edge
cloud computing system for big data applications,” in Proc. of the 5th IEEE International
Conference on Cloud Networking, pp. 170-175, October 03-05, 2016. Article (CrossRefLink).

[20] Q. De Coninck, M. Baerts, B. Hesmans and O. Bonaventure, “A first analysis of multipath TCP
on smartphones,” in Proc. of the 17th International Conference on Passive and Active Network
Measurement, pp. 57-69, March 31-April 1, 2016. Article (CrossRefLink).

[21] P. Benko and A. Veres, “A passive method for estimating end-to-end TCP packet loss,” in Proc.
of the Global Telecommunications Conference, pp. 2609-2613, November 17-21, 2002.
Article (CrossRefLink).

[22] Claudio Favi and Grenville Armitage, “Dynamic performance limits of the Benko-Veres passive
TCP packet loss estimation algorithm,” in Proc. of the Australian Telecommunications Network
and Applications Conference, pp. 336-340, December 08-10, 2004. Article (CrossRefLink).

[23] S. Jaiswal, ““Measurements-In-The-Middle”: inferring end-end path properties and
characteristics of TCP connections through passive measurements,” Ph. D thesis, University of
Massachusetts Amherst, September, 2005. Article (CrossRefLink).

[24] Denis Collange and Jean-Laurent Costeux, “Correlation of packet losses with some traffic
characteristics,” in Proc. of the 8th International Conference on Passive and Active Network
Measurement, pp. 233-236, April 05-06, 2007. Article (CrossRefLink).

[25] G. Cheng and Z. Gao, “Estimation packet loss ratios for the two segments of end-to-end path on
the monitor,” in Proc. of the International Conference on Computer Science and Service System,
pp. 793-796, August 11-13, 2012. Article (CrossRefLink).

[26] Saeed Ullah, Imdad Ullah, Hassaan Khaliq Qureshi, Rim Haw, Sungman Jang and Choong Seon
Hong, “Passive packet loss detection in Wi-Fi networks and its effect on HTTP traffic

http://dx.doi.org/doi:10.1007/s10586-017-0762-2
http://dx.doi.org/doi:10.1111/ijmr.12184
http://dx.doi.org/doi:10.1007/3-540-36480-3_11
http://dx.doi.org/doi:10.1007/978-3-642-13315-2_24
https://media.neliti.com/media/publications/106387-ID-visualisasi-bandwidth-usage-untuk-univer.pdf
http://dx.doi.org/doi:10.1109/CloudNet.2016.56
http://dx.doi.org/doi:10.1007/978-3-319-30505-9_5
http://dx.doi.org/doi:10.1109/GLOCOM.2002.1189102
http://www.caia.swin.edu.au/pubs/ATNAC04/favi-armitage-ATNAC2004.pdf
https://dl.acm.org/citation.cfm?id=1145034
http://dx.doi.org/doi:10.1007/978-3-540-71617-4_25
http://dx.doi.org/doi:10.1109/CSSS.2012.203

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5969

characteristics,” in Proc. of the International Conference on Information Networking, pp.
428-432, February 10-12, 2014. Article (CrossRefLink).

[27] G. Cheng, Y. Tang and T. Gyires, “A lightweight approach to manifesting responsible parties for
TCP packet loss,” in Proc. of the 14th International Conference on Networks, pp. 211-217, April
19-24, 2015. Article (CrossRefLink).

[28] N. L. M. Van Adrichem, C. Doerr and F. A. Kuipers, “OpenNetMon: network monitoring in
openflow software-defined networks,” in Proc. of IEEE Network Operations and Management
Symposium, pp. 1-8, May 05-09, 2014. Article (CrossRefLink).

[29] M. Yu, L. Jose and R. Miao, “Software Defined Traffic Measurement with OpenSketch,” in Proc.
of the 10th USENIX conference on Networked Systems Design and Implementation, pp. 29-42,
April 02-05, 2013. Article (CrossRefLink).

[30] R. Hark, D. Stingl, N. Richerzhagen, K. Nahrstedt and R. Steinmetz, “DistTM: collaborative
traffic matrix estimation in distributed SDN control planes,” in Proc. of IFIP Networking
Conference (IFIP Networking) and Workshops, pp. 82-90, May 17-19, 2016.
Article (CrossRefLink).

[31] R. Hark, N. Richerzhagen, B. Richerzhagen, A. Rizk and R. Steinmetz, “Towards an adaptive
selection of loss estimation techniques in software-defined networks,” in Proc. of IFIP
Networking Conference (IFIP Networking) and Workshops, pp. 1-9, June 12-16, 2017.
Article (CrossRefLink).

[32] Chydzinski Andrzej, Marek Barczyk and Dominik Samociuk, “The single-server queue with the
dropping function and infinite buffer,” Mathematical Problems in Engineering, vol. 2018, Article
ID 3260428, 12 pages, October, 2018. Article (CrossRefLink).

[33] E. M. Sierra, D. Muelas, J. Ramos, J. E. L. de Vergara, D. Morató and J. Aracil, “Online
Detection of Pathological TCP Flows with Retransmissions in High-speed Networks,” Computer
Communications, vol. 127, pp. 95-104, September, 2018. Article (CrossRefLink).

[34] V. Moreno, J. Ramos, P. M. S. del Río, J. L. García-Dorado, F. J. G. Arribas and J. Aracil,
“Commodity packet capture engines: tutorial, cookbook and applicability,” IEEE
Communications Surveys and Tutorials, vol.17, no. 3, pp.1364-1390, May, 2015.
Article (CrossRefLink).

[35] Paul Emmerich, Maximilian Pudelko and Sebastian Gallenmüller, “FlowScope: efficient packet
capture and storage in 100 Gbit/s networks,” in Proc. of the 16th International IFIP Networking
Conference (IFIP Networking) and Workshops, pp. 1-9, June 12-16, 2017.
Article (CrossRefLink).

[36] G. J. Moreno, R. Leira, J. E. L. de Vergara, F. J. G. Arribas and I. González, “On the feasibility
of 40 gbps network data capture and retention with general purpose hardware,” in Proc. of the
33rd Annual ACM Symposium on Applied Computing, pp. 970-978, April 09-13, 2018.
Article (CrossRefLink).

[37] F. Schneider and A. Feldmann, “Packet capture in 10-gigabit Ethernet environments using
contemporary commodity hardware,” in Proc. of the International Conference on Passive and

http://dx.doi.org/doi:10.1109/ICOIN.2014.6799718
http://www.thinkmind.org/index.php?view=article&articleid=icn_2015_8_50_30222
http://dx.doi.org/doi:10.1109/NOMS.2014.6838228
https://dl.acm.org/citation.cfm?id=2482631
http://dx.doi.org/doi:10.1109/IFIPNetworking.2016.7497233
http://dx.doi.org/doi:10.23919/IFIPNetworking.2017.8264838
http://dx.doi.org/doi:10.1155/2018/3260428
http://dx.doi.org/doi:10.1016/j.comcom.2018.06.002
http://dx.doi.org/doi:10.1109/COMST.2015.2424887
http://dx.doi.org/doi:10.23919/IFIPNetworking.2017.8264852
http://dx.doi.org/doi:10.1145/3167132.3167238

5970 Lan et al.: Strengthening Packet Loss Measurement from the Network Intermediate Point

Active Network Measurement, pp. 207-217, April 05-06, 2007. Article (CrossRefLink).
[38] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich and G. Carle,

“High-performance packet processing and measurements,” in Proc. of the 10th International
Conference on Communication Systems and Networks, pp. 1-8, January 3-7, 2018.
Article (CrossRefLink).

[39] L. Braun, A. Didebulidze, N. Kammenhuber and G. Carle, “Comparing and improving current
packet capturing solutions based on commodity hardware,” in Proc. of the 10th ACM SIGCOMM
Conference on Internet Measurement, pp. 206-217, November 01-30, 2010.
Article (CrossRefLink).

[40] A. Papadogiannakis, M. Polychronakis and E. P. Markatos, “Stream-oriented network traffic
capture and analysis for high-speed networks,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 10, pp. 1849-1863, September, 2014. Article (CrossRefLink).

[41] E. Papadogiannaki, L. Koromilas, G. Vasiliadis and S. Ioannidis, “Efficient software packet
processing on heterogeneous and asymmetric hardware architectures,” IEEE/ACM Transactions
on Networking, vol. 25, no. 3, pp. 1593-1606, June, 2017. Article (CrossRefLink).

[42] D. Smekal, J. Hajny and Z. Martinasek, “Packet generators on field programmable gate array
platform,” in Proc. of the 40th IEEE International Conference on Telecommunications and
Signal Processing, pp. 97-100, July 5-7, 2017. Article (CrossRefLink).

[43] S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. K. Gupta and V. Kumar, “Comparative
study of various traffic generator tools.” in Proc. of the Recent Advances Engineering and
Computational Sciences, pp. 1-6, March 6-8, 2014. Article (CrossRefLink).

[44] M. Allman, V. Paxson and E. Blanton, “TCP congestion control,” RFC 5681, IETF, September,
2009. Article (CrossRefLink).

[45] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP selective acknowledgment options,”
RFC2018, IETF, October, 1996. Article (CrossRefLink).

[46] S. Shin, D. Han, H. Cho, J. M. Chung, I. Hwang and D. Ok, “TCP and MPTCP retransmission
timeout control for networks supporting WLANs,” IEEE Communications Letters, vol. 20, no. 5,
pp. 994-997, May, 2016. Article (CrossRefLink).

[47] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky, “An extension to the selective
acknowledgment (SACK) option for TCP,” RFC 2883, IETF, July, 2000.
Article (CrossRefLink).

[48] M. Allman, W. M. Eddy and S. Ostermann, “Estimating loss rates with TCP,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 3, pp. 12-24, December, 2003.
Article (CrossRefLink).

[49] H. Wu and J. Gong, “Packet loss estimation of TCP flows based on the delayed ACK mechanism,”
in Proc. of the Asia-Pacific Network Operations and Management Symposium, pp. 540-543,
September 23-25, 2009. Article (CrossRefLink).

[50] NS-2 – The network simulator version 2.34, 2012. Article (CrossRefLink).

http://dx.doi.org/doi:10.1007/978-3-540-71617-4_21
http://dx.doi.org/doi:10.1109/COMSNETS.2018.8328173
http://dx.doi.org/doi:10.1145/1879141.1879168
http://dx.doi.org/doi:10.1109/JSAC.2014.2358831
http://dx.doi.org/doi:10.1109/TNET.2016.2642338
http://dx.doi.org/doi:10.1109/TSP.2017.8075944
http://dx.doi.org/doi:10.1109/RAECS.2014.6799557
http://dx.doi.org/doi:10.17487/RFC5681
http://dx.doi.org/doi:10.17487/RFC2018
http://dx.doi.org/doi:10.1109/LCOMM.2016.2542809
http://dx.doi.org/doi:10.17487/RFC2883
http://dx.doi.org/doi:10.1145/974036.974038
http://dx.doi.org/doi:10.1007/978-3-642-04492-2_72
http://www.isi.edu/nsnam/ns

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5971

Haoliang Lan is a Ph.D candidate in School of Cyber Science and Engineering of
Southeast University. His major research interests include network measurement, network
management and network security.

Wei Ding received B.S degree in the computer soft from Nanjing University in 1982. She
received Ph.D degree from Southeast University in 1995. Nowadays she is a professor of
Southeast University. Her major research interests include high speed communications,
network management and network security.

YuMei Zhang is a M.S candidate in school of big data and information engineering of
Guizhou University. Her major research interests include network measurement and
network management.

