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Abstract

Support vector machine (SVM) classifiers have been widely used for object detection.
These methods usually locate the object by finding the region with maximal score in an image.
With bag-of-features representation, the SVM score of an image region can be written as the
sum of its inside feature-weights. As a result, the searching process can be executed efficiently
by using strategies such as branch-and-bound. However, the feature-weight derived by
optimizing region classification cannot really reveal the category knowledge of a feature-point,
which could cause bad localization. In this paper, we represent a region in an image by a
collection of local feature-points and determine the object by the region with the maximum
posterior probability of belonging to the object class. Based on the Bayes’ theorem and
Naive-Bayes assumptions, the posterior probability is reformulated as the sum of
feature-scores. The feature-score is manifested in the form of the logarithm of a probability
ratio. Instead of estimating the numerator and denominator probabilities separately, we readily
employ the density ratio estimation techniques directly, and overcome the above limitation.
Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of
our method compared to the baselines. In addition, the performance can be further improved
by taking advantage of the recently developed deep convolutional neural network features.
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1. Introduction

Since efficient subwindow search [1] was first proposed to supplant the time-consuming

sliding window for object localization, many extensions [2, 3, 4, 5, 6, 7, 8] of it have emerged
and constituted an important branch in the literature. All of these methods can be unified in a
feature-voting framework that consists of two components: evaluation function that measures
how likely a region belonging to the object class and that is additive in terms of feature-points
(i.e., grid SIFT), and search strategy that can rapidly determine the region with the maximum
score in the image space.

Many of the extensions [2, 5, 6, 8] adopt linear SVM with bag-of-features representation to
provide an additive classifier, and decompose the SVM score of a region into the sum of
feature-weights to facilitate the usage of efficient search strategies. However the scheme does
not work well in object localization because 1) the feature-weights optimized for classification
ata region-level cannot perform well for feature-point classification; 2) important information
is lost during quantization for bag-of-features representation.

The methods based on a SVM classification system may have drawbacks when shifted to an
object localization task, since a region with maximum classification score does not necessarily
correspond to the best result for object location. When the feature-weights are positively
biased, the search result tends to cover much background, sometimes even the whole image;
On the contrary, when the feature-weights are negatively biased, the search result would be a
tiny region covering a few feature-points, leading to incomplete localization. For some of the
methods based on SVM classification, the feature-weights are heuristically tuned with a little
fraction of the bias item in their implementation s to generate good results [5].

The quantization loss is also criticized in image classification [9]. The authors instead
propose Naive-Bayes Nearest Neighbour (NBNN) to compute the Image-to-Class distance in
the space of feature-points without quantization. The NBNN motivates several variants [10, 11,
12]. Inspired by the success of the NBNN in image classification, researchers apply it to object
localization [10, 4, 7]. These methods approximate the feature density with nearest neighbour
distance and use a feature voting scheme for object localization.

In this paper, we enrich the feature-voting framework with a new formulation for object
localization. Note that we do not intend to propose new efficient search methods. Hence it is
not about improving object localization efficiency. Rather the contribution is an evaluation
function and a novel feature scoring strategy that aim to overcome the limitations mentioned
above. It can work with any previous search strategies such as branch-and-bound [1] and
branch-and-cut [5]. Given a test image, we intend to locate the object by the region that has the
maximum posterior probability of belonging to the object class. In order to formulate this
intuition, we represent a region by a collection of local features such as SIFT [13] and SURF
[14] for images, STIP [15] for videos, and deep pixel features [16, 17]. We further
demonstrate that the posterior probability of a region can be reformulated as the sum of
feature-scores based on Bayes' theorem and Naive-Bayes assumption.

Although the methods in [10, 4, 7], which can be categorized into the feature-voting
framework, obtain similar ratio form of feature score, they use the nearest neighbor distance to
approximate kernel density estimation to estimate two densities separately. Compared to
computing two densities independently and then taking the ratio, the superiority of estimating
the ratio directly has been demonstrated thoroughly [18]. We therefore model the feature score
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with Gaussian kernels, and generate more accurate estimation for the likelihood of a
feature-point belonging to the object class.

Our contributions in this paper include the following three aspects. 1) We analyze the object
localization methods based on SVM with bag-of-features, which constitute an important
branch in object localization field, and point out their drawback. 2) We enrich the
feature-voting framework for object localization by a maximum posterior scheme. 3) We
model the feature score with Gaussian kernels, which gains more benefits from generative
model compared to the nearest neighbour approximations. 4) The recently developed deep
convolutional local features can be adopted and greatly improve the performance.

The remainder of this paper is organized as follows: We unify related works in a
feature-voting framework, and provide a relatively comprehensive literature review in Section
2. In Section 3, we analyze the object localization methods based on SVM classification, and
point out their drawback and the cause. Then the new formulation for object localization and
the feature-score estimation are detailed in Section 4 and 5 respectively. Experimental results
are reported in Section 6. Section 7 concludes this work.

2. Literature Review

2.1 Feature Voting for Object Localization

Many methods for efficient object localization can be unified in a feature-voting framework.
In such a framework, an evaluation function f : ¥ —— R measures a region R € X how
likely it belongs to the object class. Consequently the object localization in a new image | is
to find a region maximizing the score: R™ =argmax,_, f(R). This evaluation function is
required to be additive in terms of feature-points to facilitate the usage of efficient search
strategies: f(R) = Z f(x;), where x; represents a local feature-point in the region R . We

X €R
next review the related works according to these two components.

1) Evaluation Function. For methods [2, 1, 5, 6, 8] based on SVM classification, the
evaluation function is just the SVM decision function. In order to ensure the additivity, the
kernel is restricted to linear and the feature is expressed as bag-of-words histograms. Thus the
score of a region can be decomposed into the sum of the feature-scores, which are actually the
weights of the visual words the feature-points mapping to. Lehmann et al. [3] use Footprint
[19] to score a region, and express the score as the sum of each feature contribution. Boiman et
al. [9] propose image-to-class distance for classification. Based on the same Naive-Byaes
assumption, object localization is formulated as a feature voting problem from the perspective
of mutual information and likelihood respectively [10, 4, 7]. They all employ nearest
neighbour distance to approximate a feature score. [7] and [10] contribute different strategies
to adapt kernel bandwith, while [4] propose to merely use the positive features to localize
objects.

2) Efficient Search Strategy. The original search strategy proposed in ESS can be directly
applied to videos, but it is too slow due to the dimension increase. In order to speed up the
search process, Yuan et al. [7, 20] split the search space into two subspaces and propose a
tighter upper bound for subvolume search in videos. However, the localization form of these
methods is limited to rectangles for images or cubes for videos, and it will be rather restrictive
for non-boxy objects (dogs, snakes, etc.). In order to address this limitation, a more flexible
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localization form [6] using composite bounding boxes and bounding polygons is proposed
under the branch-and-bound framework. Fundamentally, Vijayanarasimhan and Grauman [5]
introduce a branch-and-cut approach to determine the best-scoring region that can be arbitrary
shape. In [5], an image is first over-segmented into super-pixels, and a region-graph is
constructed according to the super-pixel adjacency. Then the object search is formulated as
finding the maximum-weight connected subgraph, and solved as a prize-collecting Steiner tree
problem [21]. The branch-and-cut is also exploited with more accurate pre-segmentation [8],
and applied to action localization [2].

2.2 Density Ratio Estimation

New statistical data processing towards the ratio of probability densities has been developed in
machine learning community [18]. A naive approach to estimating a density ratio is to
estimate two densities separately and then take their ratio. However, this naive approach is not
reliable especially in high-dimensional problems [18]. To overcome this issue, various
approaches have been proposed to estimate density ratio without going through density
estimation [22, 23, 24, 25, 26]. Density ratio estimation has been used for non-stationary
adaptation [27], outlier detection [28] and change-point detection [29, 30]. Doersch et al. [31]
propose a discriminative variant of mean-shift for finding local maxima of density ratios that
correspond to discriminant patches. Wang et al. [32] employ least squares density ratio
estimation to compute feature score and search maximum-scored connected-regions.

2.3 Deep Local Features

Recently, classical local feature extractors (e.g., SIFT [13]) have been substantially
outperformed by the introduction of the latest generation of Convolutional Neural Networks
(CNNs) [33]. In a typical CNN, the last layer captures more discriminant semantic
information that is significant for classification, while the earlier layers contains more spatial
information which serves as an important factor for localization. To get the best of both worlds,
some researchers have proposed concatenating outputs of multiple layers at a location to form
a deep local feature representations for visual tracking [17] and objet localization [16]. Long
et al. [34] introduce skip-connections and add high-level prediction layers to intermediate
layers to generate pixel-wise prediction results at multiple resolutions. Badrinarayanan et al.
[35] employ a convolutional encoder-decoder network with pooling index guided
de-convolution modules to exploit the features from multi-level convolutional layers. Zhang et
al. [36] propose a generic aggregating multi-level convolutional feature framework for salient
object detection. It integrates multi-level feature maps into multiple resolutions, and learn to
combine feature maps.

3. Drawback of Object Localization via SVM Classification

The object localization methods based on SVM classification depend on a crafty
decomposition of the classifier score. Concretely, local descriptors (e.g. SIFT) are extracted
densely for each image. Then k -means is applied to a sample of randomly selected training
descriptors to get K cluster centers, which are actually used as visual vocabulary to quantize
all the descriptors. For an image region R containing M local feature-points

{X, %"+, Xy}, where x e R" indicates the descriptor of the i -th local point, each
descriptor X; is mapped to its closest visual word which is indexed by k, €{L,2,...,K}. Thus



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6013

the image region can be described as a histogram h(R), by counting the number of

feature-points mapped to every visual word.
With the histogram feature representation, N images of training data containing objects of

interest or not can be expressed as T ={(h(l,), y,),---,(h(1,,), ¥y )}, where h(l,) e R®, Vi
and y, e{-1,1}, Vi. We can obtain a linear SVM classifier by optimizing:
N
min %n Wi+CY %
sty (w'h(l,) +b)>1-&,, Vi; 1)
§=0, Vi.
Here, w is the weight imposed on different feature dimensions; & is the slack variable which

allows for penalized constraint violation; C is the parameter controlling the trade-off between
having a larger margin and violating less constraints; b is the bias item. (1) is usually solved
with the dual problem:

m‘jn %io’i("jyiyj(h(li)'h(lj))_iui

i,j=1

N

s.t. D ay; =0; @
i=1
0<a, <C,Vi

where a is the Lagrange multiplier. (2) can be solved by a typical programming package.
Then for aregion R in atest image, its decision value can be calculated by:

N
f(R)= i, (h(1)-h(R))+b. "
i=1
Let h’ denote the j-th bin of the histogram h. It is associated with the feature-weight

N
w; = z y,a;h’(1,) , and the decision value can be reformulated as:
i=1

K M
f(R)=> wh'(R)+b=>"w, +b,
=t i=1

where k; is the index of the visual word that feature-point X, is mapped to.

The bias item b can be omitted for maximizing f (R) . Thus the score of the region R is

decomposed into the sum of its M feature-weights, and the object search problem can be
formulated as:

(4)

M
R =max,_, » W,,
Rcl Z:;, K, ©)

where w, is the SVM weight for k; -th feature. w, is back projected to the local

feature-point X; through the visual vocabulary and can be considered as the score of the
feature-point that contributes to the object localization. That is why we call it a feature-voting
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framework. The region search process can be conducted efficiently by ESS [1] or ERS [5] to
generate sub-window and irregular localization respectively.

It is an ingenious formulation deduction that transforms an image region score into the
summation of its inside feature-points, but the object search result could be awful. The
fundamental cause is that SVM aims to find the maximum margin to separate the regions in an
image into two categories, and that does not guarantee the region with the maximum response
is the perfect object location. From another perspective, the feature-weights derived by
minimizing the generalization error of a region classification cannot reflect the category of the
feature-points, i.e., a feature-point with negative weight does not mean it belongs to
non-object, but it will contribute negatively in the search process mentioned above and tend to
be excluded from the object location.

We present an actual example in Fig. 1. The feature-weights are plotted in (a) for the
learned SVM with b =1.4848, where a red point indicates a positive weight, and green
negative, and brighter color means higher absolute value. In (b) we plot some of the positive
sub-windows according to the SVM classification, with the decision score shown in the upper
right corner. For the sake of clarity, we enlarge the local region around the car and use
different colors to distinguish sub-windows. It can be seen that although the SVM classifier
does well in the region classification of car and non-car, the feature-weights do not have
reliable clues for the categories of the feature-points: many of the feature-points on the car are
assigned negative weights, and some in the background are assigned with positive ones. This
consequently leads to a bad localization result: the region with the maximum score (1.4999) is
the sub-window only covering a fraction of the car.

(a) Feature-weights

(b) Positive subwindows
Fig. 1. An actual example of the object localization based on SVM classification. The subwindow with
the maximal score does not correspond to the one that can perfectly fit the object.

4. Our Method

In this section, we aim to address the problem of applying SVM classifier to object
localization. We follow the feature-voting framework, which consists of an evaluation
function additive in terms of feature-scores and an efficient search strategy. We adopt the
posterior probability of belonging to the object as the evaluation function, and derive a
feature-score in the form of density ratio based on Bayes' theorem and Naive-Bayes
assumption. As for the feature-score estimation, we model the density ratio with Gaussian
kernels, and solve the model by minimizing the KL-divergence of a probability density and its
estimation among the training feature-points, that has been studied in [37].
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4.1 Object Localization via Maximum Posterior

In order to determine the object location in an image |, we can find a region R” that
maximizes its posterior probability of belonging to the object class:

R" =argmax p(y =1|R).
Rl (6)
The posterior probability can be rewritten with Bayes' theorem as:

p(y=1|R)
P(RIy=1)p(y=1)
PRIy=Dp(y=1+p(RIy=-Dp(y=-1) .
_1,(1 p(Rly=-1) p(y——l)]

p(RIy=1) p(y=1

Assume the ratio of prior probabilities of object and background is a constant, then
maximizing (7) can be equivalently transformed to

PRIy=1)
Rl p(Rly=-1) ®)
Based on the Naive-Bayes assumption that the local feature-points are i.i.d given its class, it
can be rewritten as

max )
Rl SeeR p(xly——) 9)
Taking the logarithm, (9) becomes
P(x |y =1)
max » log————.
Rl xze;e p(x [y=-1) (10)
We denote
p(x]y=1)
f(x)=log————
=109 hixy =- eE

as the score of feature-point X belonging to the object class. Then the object localization
task is formulated as looking for a region that has a maximal summation of feature-scores,
which can be achieved by readily employing branch-and-bound or branch-and-cut strategies.
For a feature-point, if the object class likelihood is higher than the non-object class likelihood,
the value of the feature-score is positive, and the point will contribute positively for the object.
Otherwise, if the value of the feature-score is negative, the point will contribute negatively for
the object. For simplicity of notation, we denote the class conditional probability densities by

p, (x) and p_(x) respectively, and (11) becomes:

p. (%)
f = + )
K)=log- "9 12)

4.2 Feature Score Estimation

In this section, we model the density ratio y(Xx) = p, (x)/ p_(x) with Gaussian kernels,

and solve the model by minimizing the KL-divergence of a probability density and its
estimation among the training feature-points, that has been studied in [37].
We model y(X) using a linear combination of Gaussian kernels:
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7(X) =w'g(x), (13)
where w = (W,,W,,...,w, )" is the parameter to be learned and m is the order of the
model, ¢(X) =(&(X), 4, (X)..... 4, (x))T is a set of Gaussian kernel functions.

We apply clustering to the training feature-points to get m centers {c,,C,,...,C,}, and use
them to center the Gaussians. Therefore the kernel function takes the form of;

mxmpo):em(_%}

where o is set as the average Euclidean length of the local descriptors.
In order to solve the above model, we minimize the KL-divergence of the density p, (X)

(14)

and its estimation m = 7//(;)p_ (x):

5 () p. (X)
KLp, () p.(0)] =] p.(x)log =—"——dx
J. y(X)p_(x)

_ p. (x) —
=[p, (% log- [ p.(x)log y (x)dx -

=[.00t0g 2 M x- . () 1og(w” 4)

Note that the first term in Eq. (15) is independent of w and can be ignored when the goal is
to minimize the function with respect to w. Therefore the w can be solved by the following
optimization:

min -, [Iog (w%(x))}

st. B [wig(x)]=1 (16)
w>0.
In the above optimization, the first constraint arises from the fact that 7 is non-negative

since it is a ratio of two probability densities; and the second constraint exists because p/+(\x)

should be properly normalized to be a probability density.
Note that the expectations cannot be directly calculated since the probabilities are not
accessible. We approximate them using sample means:

B, [Iog(w%(x))} ~ |?1| > log (WT¢(Xi )),

i ez, 7)
B_[wg(x] z|71|_2w%<xi>, -

where we have denoted the indices of the feature-points from object class and background
by Z, and Z_ respectively.
Then the optimization becomes:
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min - % z log (WT¢(Xi ))

1 ™
I A= (19)
_ lieZ_

w>0.

This is a convex optimization problem and the global optimum can be obtained by a typical
gradient descent method.

We summarize the proposed pipeline in Fig. 2. Given training images with bounding-box
ground-truth, we first densely extract local features to obtain training feature-points. Then
clustering is applied to the training feature-points to obtain m centers that are used to center
the Gaussians in Eq. (14). After modeling the density ratio as a linear combination of the
Gaussian kernels, we minimize (16) that is derived from KL-divergence. To this end, we need
to use the sample means of the training feature-points to approximate the expectations therein,
and obtain the new objective function (19). The solved parameter is used to calculate the
density ratio (13). Once the density ratio estimation is completed, we can perform object
localization for test images. We first densely extract feature-points and estimate their scores of
(11) using (13), then search the maximum-score region using ESS and ERS to obtain
bounding-box and irregular-shape localizations, respectively.

s.t.

1 Clustering | Gayssian | kL-DIv

: Centers 1 (16)

1

1 Dense

: Training | Sampling | Training .| Sample Mean Objective | Minimize | Density Ratio

/1 ¥ ¥

1| Images "| Features Y (17) (18) (19) Model (13)

\

\

___________________________________________________ b — -
l/ ——————————————————————————————————————————————————— \
. Dense |
1 Test Sampling | Feature ¥ | Feature J  Max(10) 5|  Object :
: Images "1 Points "| Scores "] ESS/ERS "| Localization |
I

1
- /

e e e e e e e e e e e e e e e e e e e

Fig. 2. The block diagram of the proposed architecture.

5. Experiments

In this section, we validate the performance of our method using a car dataset and PASCAL
VOC 2007 dataset. Both the branch-and-bound and the branch-and-cut search strategies are
employed to generate bounding-box and irregular-shape localizations. We compare with the
baselines SVM-ESS [1], SVM-ERS [5], MIM-ESS [7], R-CNN [38], POS-FEAT [4],
LS-MWCS [39] and GC_LP [32].
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5.1 Component Analysis

In order to visualize the issues described in the introduction, and fully analyze the
components in the proposed algorithm, we collected a small car dataset for experiments. It
comprises 400 images of university campuses where half of them contain cars and the others
do not. To protect privacy, all of the cars are presented in side viewpoint. The cars in the
images vary in shape, size, grayscale intensity and location. The non-car images contain
similar elements to the background of the car images. Some examples are given in Fig. 3. For
each car image, we manually label the car by providing its minimum enclosing rectangle. In
addition, following [40], we manually label the over-segmented regions to generate a
pixel-wise ground-truth to evaluate irregular-shape localization performance.

Fig. 3. Some images from the campus car dataset.

We use half of the car images and non-car images as training data. The same as [2, 1, 5, 7],
we only use the left images that actually contain a car for test. For each image, we extract SIFT
[13] features densely using VL-FEAT toolbox [41]. For SVM-ESS [1], we cluster the training
feature-points to get 1000 centers to construct bag-of-words representation. For our method,
we use the same 1000 centers to center the Gaussian kernels.

We first examine the effect of the bias item in SVM-ESS and visualize the issue in
localization by SVM classification. We train a linear SVM using the training data and apply it
to test images for car localization. The performance is evaluated by average precision (AP)
calculated from Precision-Recall (PR) curve. In the experiments, the bias item cannot be
ignored, by contrast, it plays an important role in localization. When the bias item is totally
ignored as suggested in the original work [1, 42], the AP is 0. None of the cars are correctly
localized since the feature-weights are negatively biased seriously. When the feature-weights
are tuned with a fraction of the bias value, the localization result can be improved. However,
there is not a theoretical way to determine the coefficient. Fig. 4 shows the changes of the AP

when different coefficient — is imposed on the bias value b . We also quantitatively compare
nb

it with our method. The PR curves are shown in Fig. 5. For SVM-ESS, we have tuned with the

bias term to generate the largest AP. As can be seen from the figure, our method outperforms

the baseline.
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Fig. 5. Precision-recall curves on the Car dataset.

In order to analyze the failure of localization based on SVM classification and demonstrate
the superiority of our feature-scoring strategy, we randomly choose some images from the
dataset to visualize the feature scores and object localization in Fig. 6. We plot a red point to
indicate a positive feature-score and green point negative feature-score. The brighter the color
is, the larger the absolute value of the score is. The first column shows the original images. The
second shows the feature scores from original SVM-ESS, and the third column corresponds to
the SVM-ESS with the maximum AP whose weights are tuned with a fraction of the bias value.
The last column shows our results. For each image, we also plot the localization bounding-box
with blue rectangle to make further comparison. It can be seen that the original SVM weights
are negatively biased: Most of the points are negatively scored even on the car, and the
localization bounding-box shrinks to a tiny region. After we tune the weights with a fraction of
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b, the weights are changed to the positive direction, and the localization results get much
better. Since we model the density ratio using Gaussian kernels and estimate the feature score
directly, the feature-point classification is more accurate and the localization results are
visually better. One problem is that we use the bounding-box annotation for training, and
much background clutter such as the curbs beneath the cars is included, consequently many
feature-points in the curbs are misclassified during testing. However, it does not affect the
localization, since the positive feature-points on the object dominate the bounding-box.

Original SVM-ESS B-SVM-ESS Ours

Fig. 6. Visualization of feature scoring and car localization. Each feature-point is stained with green
and red colors for negative and positive weight values, respectively. The bounding-box localizations are
presented with blue rectangles. The figure is best viewed in color.



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 6021

Although we use the same branch-and-bound strategy for sub-window search, the time
consumption varies for different feature scoring. When the feature scoring is more accurate,
the searching is significantly fast. In our experiments, a desktop with Intel Core CPU
(2.90GHz) and 4GB RAM with Windows 7 and Matlab R2014a was used as the experimental
platform. The average searching time for SVM scoring is 4.8s per image (600*800 resolution),
while that for our scoring is 0.3s.

5.2 Feature Voting for Object Localization

We evaluate the performance of our method for object localization in this section. We
proposed an evaluation function and a feature-scoring strategy, and they are compatible with
branch-and-bound as well as branch-and-cut searching, therefore we test both of them.
PASCAL VOC 2007 is a more challenging and more popular dataset for object detection. The
dataset has been previously partitioned into training and test sets. There are twenty classes of
objects. All of the images are provided bounding-box annotation for localization evaluation.
However, pixel-wise ground truth is not available. Vijayanarasimhan and Grauman [5]
manually annotated the “cat’ and ‘dog’ classes to generate pixel-wise ground truth, which can
be used to evaluate the localization results of branch-and-cut searching.

Table 1. Quantitative comparison on PASCAL VVOC 2007. The performance is evaluated in terms of
the mean average precision.

Methods aero bicy bird boat bott bus car cal chai cow
Ours 0.340 0.270 0.277 0.267 0.109 0.348 0.378 0466 (.091 0.269
POS-FEAT 0.216 0.222 0.162 0.131 0.046 0.273 0.200 0.428 0.103 0.149
MIM-ESS 0.284 0186 0.078 0.129 0.03 0.324 0.207 0.341 0.030 0.132
SVM-ESS 0.265 0.216 0.117 0.131 0.009 0.388 0.127 0.344 0,011 0.117
diningtable dog hors moto | pers | pott shee sofa trai ™ | ave
0.402 0.353 0.391 0.302 0.203 0.145 0.152 0.347 0.445 0.109 0.283
0.274 0.344 0.252 0.269 | 0.149 | 0115 0.130 0.296 0.310 0.104 | 0.209
0.134 0.156 0.287 0217 | 0091 | 0001 0.119 0.206 0333 0.091 | 0174
0.144 0.21 0.091 0.211 | 0.035 | (.09 0.091 0.179 0.332 0.024 | 0.157

Table 2. Quantitative comparison for branch-and-cut search.

Categories Ours GC_LP SVM-ERS LS-MWCS
Car 0.679 0.615 0.583 0.607
PASCAL.cat 0.327 0.313 0.287 0.302
PASCAL.dog 0.316 0.292 0.269 0.285

For branch-and-bound searching, we consider SVM-ESS [1], MIM-ESS [7], POS-FEAT [4]
as baselines. We train the models using training and validation images, and show the APs on
the test set in Table 1, from which we can see our method performs better than the others on
most classes. As we have found in the previous part, it is the DRE-based feature-scoring
strategy that beats [1] and [7]. In addition, although the object searching aims to find a region
with the densest positive score, negative feature-points still help to determine the extension of
the region.

Our method is also compatible with branch-and-cut searching to generate irregular-shape
object localization. We thus compare with related methods SVM-ERS [5], LS-MWCS [39]
and GC_LP [32]. LS-MWCS is an extension of ERS to weak supervision. For fair comparison,
all of the methods are trained using the same bounding-box. We list the mean overlap (mOL)
in Table 2, and our method outperforms the baselines significantly. It demonstrates that our
feature-scoring is better than that based on SVM classification for an object localization task.
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We also visualize the irregular-shape localization results in Fig. 7. The first column shows the
original images. The second column are the over-segmentation results for each image, where
each segment is represented with different colors. The third and the last columns are the search
results from SVM-ERS and ours, respectively. Our localization is visually better. Please note
that the localization result is dependent on the over-segmentation quality. If the object parts
are not separated from the background, the localization will be imprecise (e.g., the last row).

Original over-segmentation B-SVM-ERS Ours
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5.3 Deep Feature Voting

Classical local feature extractors (e.g., SIFT [13]) have recently been substantially
outperformed by the introduction of the latest generation of CNNs [33]. In a typical
CNN-based recognition algorithm, the output of the last layer is used as a feature
representation for an image. This layer contains rich semantic information for classification,
however, it is too coarse spatially to allow precise localization. By contrast, earlier layers
contain more spatial information that is important for localization. To get the best of both
worlds, some researchers have proposed concatenating outputs of multiple layers at a location
to form a deep local feature representation [16, 17]. These previous works provide an
opportunity for us to take advantage of deep local features in feature voting framework.

One popular way to incorporate DCNN in classical machine learning algorithms is to
employ models pre-trained on large datasets such as ImageNet. We therefore consider the
deep feature from the VGG-NET [43] pre-trained on the ImageNet. We first test on the car
dataset. For each image, we first resize it to 224 x 224 and feed it into the pre-trained VGG
model, then extract the feature maps of the convolutional layers in front of each pooling layer.
Since the convolution and pooling operations in CNN reduce the spatial resolution, we
up-sample each feature map to the scale of the original image. Each up-sampled feature map is

considered as a feature representation for pixels from low level to high level. We do L,
normalization for each feature map and concatenate them with coefficients to construct a

1472-dimensional hyper-column for each pixel. Based on the findings in [44], we empirically
set the concatenation coefficients for each layer to 1, 0.8, 0.5, 0.3 and 0.1, respectively.

Table 3. Quantitative comparison of deep feature voting on PASCAL VOC 2007. The performance
is evaluated in terms of the mean average precision.

Methods aero bicy bird boat bott bus car cat chai cow
fe 7 0.576 0.579 0.385 0.318 0.237 0512 | 0.589 0.514 0.200 0.505
FT fe_7 0.642 0.697 0.500 0.419 0.320 0.626 | 0.710 0.607 0.327 0.585
FT fc_7 BB 0.681 0.728 0.568 0.430 0.368 0.663 0.742 0.676 0.344 0.635
Ours 0.672 0.710 0.619 0.459 0.293 0.700 0.709 0.747 0.334 0.654
diningtable dog hors moto pers pott | shee sofa trai TV ave
0.409 0.460 0.516 0.559 0.433 0.233 | 0.481 0.353 0.510 0.574 0.447
0.465 0.561 0.606 0.668 0.542 0.315 0.528 0.489 0.579 0.647 0.542
0.545 0.612 0.691 0.686 0.587 0.334 0.629 0.511 0.625 0.648 0.585
0.606 0.723 0.719 0.657 0.617 0.228 0.581 0.629 0.685 0.585 0.596

R

Fig. 8. Visualization of the deep feature voting on PASCAL VOC 2007.

When we replace the SIFT description by these deep features in feature voting, the
localization AP achieves 1 on the car dataset, and every object are correctly localized. This
demonstrates that by the aid of deep CNN description, feature-voting can do perfect object
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localization. We also conduct experiments on PASCAL VOC 2007 to compare with deep
CNN object detection methods fc_7, FT fc_7 and FT fc_7 BB in R-CNN [38]. We fine tune
the pre-trained VGG-NET model on the training and validation images, then extract multiple
layers as pixel descriptions. As shown in Table 3, the performance is significantly improved
compared to the SIFT description, and is better than RCNN on average. Some localization
results by the deep feature voting are visualized in Fig. 8.

6. Conclusion

Following the feature-voting framework, we formulate the object localization problem as a
maximum posterior, and decompose the posterior probability of a region into feature-scores
using Bayes' theorem and Naive-Bayes assumption. The feature-score is a function of density
ratio. Instead of estimating the numerator and denominator probabilities separately, we adopt
density ratio estimation techniques. Then efficient search strategies such as branch-and-bound
and branch-and-cut can be used to locate objects in images. Since the feature-score implies
intrinsic knowledge underlying category, our method outperforms the methods based on SVM
classification and the methods based on nearest neighbour approximation. By the aid of deep
CNN description, the localization performance of the feature-voting can be greatly improved.

There are three main advantages with respect to the proposed method. 1) By exploring the
category knowledge of feature-points, our feature score is more accurate than that derived
from SVM region classification, and thus leads to a better the localization performance. 2)
Compared to the rectangular object localization methods, the feature-voting based method can
generate localizations in the form of either bounding-box or pixel-mask. 3) The recently
developed deep convolutional local features can be adopted in our method, and greatly
improve the performance. However, the hand-crafted pipeline is not as efficient as the
dominant end-to-end DCNNS.
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