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Abstract 
 

Low-rank matrix decomposition has shown its capability in many applications such as image 
in-painting, de-noising, background reconstruction and defect detection etc. In this paper, we consider 
the texture background of rail track images and the sparse foreground of the defects to construct a 
low-rank matrix decomposition model with block sparsity for defect inspection of rail tracks, which 
jointly minimizes the nuclear norm and the 2-1 norm. Similar to ADM, an alternative method is 
proposed in this study to solve the optimization problem. After image decomposition, the defect areas in 
the resulting low-rank image will form dark stripes that horizontally cross the entire image, indicating 
the preciselocations  of the defects. Finally, a two-stage defect extraction method is proposed to locate 
the defect areas. The experimental results of the two datasets show that our algorithm achieved better 
performance compared with other methods. 
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1. Introduction 

With the rapid development of high-speed railways in China and around the world, the quality 
requirements for rails are constantly increasing. Because of the trains' high speeds, the friction 
between the wheels and the rails is greatly intensified, which will usually cause various defects, 
such as crack, rolling contact fatigue, spalling of rail-head and rail corrugation etc [1,2]. These 
defects always indicate potential dangers. They will usually cause traffic noise and can even lead 
to accidents. Rail-track quality is directly related to train safety, national economies, security, 
and other impacts [3]. Thus, rail-surface defect inspection is a crucial issue for the daily 
maintenance of rails and safe operation of trains.  
    Conventional rail track defect inspection depends on trained people that walk around railroad 
lines at regular intervals and visually check the rail tracks. This is time-consuming, subjective, 
and dangerous. Therefore, automated and nondestructive inspection systems are strongly 
recommended for practical reasons [4]. For example, Fiber Bragg grating sensors [5,6], 
ultrasonic inspection [7], Eddy currents [8,9], MEMS gyroscope sensors [10], and visual 
inspection system (VIS) [11-13]. Ultrasonic inspection is very suited to internal crack 
detection, but the speed is very slow and it cannot detect surface defects in rail tracks. 
Magnetic fields geneterated by Eddy currents are used for defect inspection using the 
Eddy-current testing method. Although the inspection speed is relatively fast and it can be 
used for surface defect inspection, the defect detection results are very sensitive to the lift-off 
effect of the probes and the condition of the rail tracks tested. 
    Visual inspection systems have been widely used in the surface defect inspection of 
industrial products in the recent years due to the major advances in computer vision techniques. 
For example, visual inspection for defects is used for TFT-LCD panels [14,15,16], capacitive 
touch panels [17], solar modules [18], touch screens [19], glass, tile and steel [20], and so on. 
In the studies cited, fractal transformation, low-rank matrix recovery, filtering methods, 
random forest analysis, ICA analysis, sparse representation, and more were used to explore the 
characteristics of the background textures. In recent years, deep learning is also used for 
anomaly detection[21,22] that included adversarial training of a generative model of normal 
appearance. The network is trained exclusively on fault-free data and completes the image 
patches with a fault-free version of the missing image region. The pixel-wise reconstruction 
error within the cut out region is an anomaly image that can be used for anomaly detection. 
However, to use deep-learning-based methods, a large amount of training data needs to be 
captured and labeled, which is not possible for some real-world applications. In [23], Charles 
et.al proposed using an RPCA method based on low-rank and block-sparse matrix 
decomposition to achieve foreground detection. In general, the defects and backgrounds 
appear differently. The defects usually have a random and sparse appearance, and the 
background is usually presented as a homogeneously textured image. This property allows for 
the defect areas to be segmented from the backgrounds.  

In recent years, low-rank matrix recovery [24-36] has attracted much attention in the areas 
of face recognition, image recovery, de-noising, and data reconstruction. The main purpose of 
low-rank matrix reconstruction is to recover the low-rank matrix from a large, but sparse error 
data set. In different applications, this is also called sparse and low-rank matrix decomposition, 
robust principle component analysis (RPCA), and rank-sparsity incoherence. The traditional 
low-rank matrix approximation methods only consider the low-rank approximation of a single 
matrix, such as RPCA [24], principal component analysis based on 1l -norm (PCAL1) [25,26], 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019                             6045 

and the recently developed low-rank matrix theory [27,28]. These methods can be considered 
as generalized cases of the sparse representation (SR) [29,30] method. Generally, these 
methods decompose a noisy low-rank matrix into a low-rank matrix plus a sparse error matrix. 
In real video applications, the columns of each frame will be concatenated to form a vector, 
and all vectors obtained from a video clip are aligned to form a low-rank matrix. Low-rank 
analysis can be applied in this manner to this large matrix. This type of operation will 
immensely increase the dimensions of the resulting low-rank matrix and destroys the inherent 
2-D correlations within an image. This produces very slow decomposition speeds and 
decreases the recovery performance. 

To address this issue, generalized low-rank approximations of matrices (GLRAM) [31] and 
robust generalized low-rank approximations of matrices (RGLRAM) [32] were developed 
with the ability to directly process a set of matrices. The GLRAM method uses the 2l -norm to 
measure the approximation error, but the 2l -norm is sensitive to outliers. Thus, RGLRAM 
methods based on the 1l -norm were proposed that are more robust to outliers and large sparse 
noise than existing 2l -norm-based methods. However, both of them ignore the rank of the 
approximation matrix. The rank of the approximation matrix is closely related to the amount 
of detail in the output image. A matrix with a higher rank often preserves more detail 
components in the output images. The noise points in an image often correspond to the detail 
image components. Thus, rank minimization is considered in the optimization framework 
presented in [33]. This study proposed to jointly minimize the nuclear norm of the 
approximation matrix and the 1l -norm of the sparse matrix. Furthermore, considering the 
smoothness of the approximation images, [34] proposed a smoothed and re-weighted low-rank 
matrix recovery (SRLRMR) method by using the re-weighted nuclear norm. Moreover, in [35], 
the TV norm and the pixel range constraint were incorporated into the existing reweighted 
low-rank matrix analysis to achieve structural smoothness significantly improve quality in the 
recovered image. 

2. Related Work 
The rail track surface discrete defects (RSDDs) inspection system has three main parts[13]: 

the image-acquisition subsystem (IAS), image-processing subsystem (IPS), and 
automatic-control block. Using a CCD camera, high- quality rail-track images can be acquired 
under the LED light sources. Then, the images are processed by defect inspection software to 
execute an automated inspection. The control block will automatically control the LED light 
sources to adjust brightness and ensure image quality. [11] proposed a Michelson-like contrast 
(MLC) measure to enhance rail images, along with a proportion emphasized maximum 
entropy (PEME) thresholding algorithm to extract the defect areas. In [12], preprocessing 
including local normalization was applied to enhance the contrast of rail track images. Then, a 
projection profile was utilized to locate the defect positions. In [13], a hierarchical extractor 
scheme was proposed for rail-track defect inspection. The coarse extractor is responsible for 
finding the background modes. The fine extractor can reduce most of the impacts of noise 
interferences by vertically fusing the context information, and horizontally fusing the prior 
information. In [37], a new inverse Perona-Malik (P-M) diffusion model was proposed for 
image enhancement. Then, an adaptive threshold binarization method was proposed for defect 
inspection. By using the Gabor texture feature, Mandriota et al. [38] applied the k-nearest 
neighbor (KNN) method to identify potential defects in rail track images. In [39], local or 
small corrugations were detected by importing local frequency features. In [40],  by using the 

http://www.baidu.com/link?url=srZ4kzvr1fbQRk98xm40lJqQJ7FY2J8eBV6yQOKPzUkM_FvfdkIsft6lTGo2hSJfSC87i9aupuW8Xljf_YgrnLKmSthHu-66yY32xCsPvrnnRSc2XxuOR_gRAeU0F23O
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maximally stable extremal regions technique, geometrical features, such as the area, centroid, 
filled area and perimeter of the defect regions, were extracted for rail surface defect sensing. In 
[41, 42], wavelet transform was compared with Fourier analysis and showed its effectiveness 
for rail inspection. In [43], an adaptive multilevel thresholding method was applied to segment 
the ROI of the tramway to estimate the threshold parameters by using a local accumulated 
histogram. Then the region growing method was adopted to decrease the influence of 
environmental noise and to predict the trend of the tramway. Generally, global or local spatial 
patterns of intensity extraction is the key issue in the above mentioned approaches, which will 
obtain good results for uniform textured rail surface images. However, because different rail 
track appearances and dynamic backgrounds are caused by heavy random noise and varying 
camera quality, these methods may fail in complex situations[44]. Moreover, most techniques 
require case-by-case adjustment of parameters, which is complex and depends heavily on 
individual experience. This limits the applications of these techniques.    
    For the low-rank matrix decomposition-based defect inspection, in [17], combining with 
image tolerance models, a nonnegative matrix factorization (NMF)-based large-size image 
registration method was proposed to detect defects in capacitive touch panels. In [15], the 
textured background of an LCD image was modeled as a low-rank matrix, and the foreground 
image with defects is treated as a sparse matrix. Then, a joint minimization of  the nuclear 
norm and 1l  norm is applied for defect image segmentation. Following the ideas of [15], an 
RPCA model was used for surface defect detection of aluminum foil [45]. In [46], the 
compressed sensing method was used in the rows and columns of defective images for defect 
inspection, then a hardware realization method was introduced for LCD mura detection. [47] 
proposed a low-rank representation method based on eigenvalue decomposition for the textile 
fabric defect detection, and the blocked-matrix method was proposed to improve the low-rank 
representation technique, which  improved the accuracy and efficiency of defect detection. [48] 
proposed a robust principal component analysis (RPCA) model with a noise term to handle 
fabric images with diverse patterns. The author decomposed the original image as a sum of a 
low-rank background, a noise matrix and a sparse defect matrix. The Gabor filter with 
multi-scales and multi-directions was applied in the fabric defect images for feature extraction 
in [49]. Then, the feature images were partitioned into blocks and the feature vectors in the 
blocks were re-constructed as a feature matrix. Finally, the RPCA model was used on the 
feature matrix to realize the segmentation of the sparse (defect) matrix.  
   Based on the above, we can see that low-rank matrix decomposition plays an important role 
in defect inspection because it does not require training data, and the defect areas can be 
segmented well into the sparse matrix. Within the low-rank decomposition models, RPCA is a 
popular basic model. The model proposed in this paper for rail track defect detection is also 
based on RPCA, and is represented as  

0,
min ( ) || ||

A E
rank A Eλ+ , s.t.  D A E= +                                      (1) 

where D is the original image, A denotes the low-rank matrix (texture background) and E 
denotes the sparse matrix (the sparse foreground). However, the 1l  norm is usually used as the 
relaxation of 0l  norm (it counts the non-zero points of a vector). This model is better for 
defects with small areas or for noise-like defects. Thus, the optimization problem (1) can be 
re-written as: 

* 1,
min || || || ||

A E
A Eλ+ , s.t.  D A E= +                                          (2) 

Here, *|| || ( )ii
A Aσ=∑  is the nuclear norm of A. This model is known as the Robust Principal 

Component Analysis (RPCA)  and can be solved by the accelerated proximal gradient (APG) 
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algorithm, augmented Lagrange multipliers (ALM), and the inexact ALM (IALM) algorithm. 

3. Motivations and Contributions 
  The RPCA model shown in Eq. (2) can only decompose a noisy low-rank matrix into a 
low-rank matrix plus a sparse error matrix. The 0l  norm in Eq. (1) is effective for the sparse 
noise, which corresponds to the small and sparse defects when the RPCA model is used in 
surface defect inspection. In rail surface defect inspection, different defect shapes will appear 
because of the long period of friction between the wheels and the rails, as shown in  Fig. 1. The 
small defects can be modeled as sparse noise in the images. However, for defects with large 
areas, the 0l  norm will not be effective. This is because within the large defect areas (Fig. 1(c) 
and (d)), the images are also smooth. But from the perspective point of the entire image, the 
large defect areas are block-sparse. Thus the sparse term described by the 1l  norm in Eq. (2) 
can not handle the block sparse defects well. The optimization models of Eq. (1) or (2) will 
treat the defects with large areas as the background (the defect areas will horizontally cross the 
whole track or be evenly merged into the background, which will be treated as the low-rank 
background), . such that the defect areas will remain in the low-rank background image rather 
than in the sparse foreground image. Thus, new methods needs to be considered for rail track 
defect inspection. 
    Fig. 2 shows the defect decomposition results directly obtained by optimization problem (2). 
It can be seen that this model can be very effective for small defects (Fig. 2(a) and (b)).The 
defect areas are almost totally decomposed into the sparse matrix E. For the large defects, the 
defect areas fail to be decomposed into the sparse foreground image because they are also 
low-rank to some extent (Fig. 2(c) and (d)). However, large defect inspection is the crucial 
issue because they are dangerous for the train's safety.   
 

                                             
                                          (a)                  (b)                (c)               (d) 

Fig. 1. Rail track images under different illuminations. The red rectangles denote the defect areas.  
(a) and (b) are the rail track images with small hole defects. (c) and (d) are the rail track images with 

large hole defects. 
 
    To solve this problem, a new model needs to be established that enables not only small 
defects, but also large defects to be decomposed into the sparse matrix. In general, the defects 
(small and large defects only; tiny defects are not considered) can be considered as a kind of 
block-sparse areas in an image. Thus, we decided to use the 2,1-norm to describe the block 
sparsity of the defects in the rail track image. Using the optimization model with 2,1-norm 
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minimization, all the defects can be decomposed well into the sparse matrix. In addition, 
another advantage by using this model is that the obtained low-rank images will contain some 
dark stripes cross the images, which just correspond to the defect areas one by one.  This 
provides us a easy way to find the row indexes of the defects and ultimately used to locates the 
defect positions. The contributions of this paper are as follows. 
 

                        
                 (a)                                 (b)                                 (c)                                 (d) 
Fig. 2. Low-rank decomposition results of the four images in Fig. 1 using the RPCA model. For each 

sub-figure, the left image is the original image, the middle one is the resulting low-rank approximation 
matrix A, and the right image is the sparse matrix E of Eq. (2). 

 
(1) A block sparse low-rank matrix decomposition model is established that can decompose 
the original image into a low-rank approximation matrix and a block-sparse matrix. 
(2) A two-stage defect extraction method is presented in this paper. According to the low-rank 
decomposition model we proposed, the 2,1-norm will force the obtained low-rank matrix to be 
smooth, and the defect areas will become dark stripes that horizontally crossing the entire 
image. Thus the upper and lower vertical bounds of each defect area can be detected by the 
low-rank matrix. Then, a simple binarization method can be used in the corresponding small 
areas of the sparse matrix to locate the exact defect areas. 
(3) The experiment results show that our proposed model is effective and accurate for different 
defect shapes under varied illuminations.  
   The rest of this paper is organized as follows. In Section III, the optimization model will be 
presented and the Alternating Direction Methods (ADM) will be used to solve the 
optimization problem. In Section IV, a two-stage defect extraction method is presented based 
on the decomposed low-rank matrix and the block sparse matrix. Section V presents the 
experiment results, and Section VI concludes the paper. 

3. Low-Rank Matrix Decomposition with Block Sparsity 

     For a matrix M NX R ×∈ , the 2,1-norm of X  is defined as 
2 ( )

2,1 , 21
1 1

|| || || ||
M M

N i
i jj

i i
X x x

=
= =

= =∑ ∑ ∑                                                   (3) 

 where ,i jx  denotes the element in the ith row and jth column of X  and ( )ix  denotes the ith 
row of matrix X . 
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      According to Fig. 1, we can see that the defects can be considered as a kind of block 
sparsity in the image. Additionally, the background is obviously a low-rank matrix. Thus, we 
propose the following model for the decomposition of the original rail track image: 

2,1,
min ( ) || ||

A E
rank A Eλ+ , s.t.  D A E= +                                               (4) 

As shown in [50], the rank minimization problem is NP-hard, which is difficult to be solved 
directly. It has been recognized that the rank minimization problem can be relaxed by using the 
nuclear norm [51]: 

* 2,1,
min || || || ||

A E
A Eλ+ , s.t.  D A E= +                                                 (5) 

In the rest of this paper, we will refer to the problem in (5) as the low-rank matrix 
decomposition with block sparsity (LDBS). The corresponding augmented Lagrangian 
function for this problem is 

                  ( , , )f A E Y 2
* 2,1|| || || || , || ||

2 FA E Y D A E D A Eµλ= + + < − − > + − −    

                                    * 2,1|| || || || , ,
2

YA E D A E D A E D A Eµλ µ
µ

= + + < − − > + < − − − − >  

                                    2
* 2,1|| || || || || || ,

2 2F
Y Y YA E D A Eµ µλ
µ µ µ

= + + − − + − < >                                  (6) 

where Y is the Lagrange multiplier, µ  is the regularization parameter, || ||F⋅  denotes the 
Frobenius norm and ,< ⋅ ⋅ >  denotes the inner product. The LDBS optimization algorithm aims 
to find the optimal solution of (6). The pseudo code of our proposed LDBS algorithm is shown 
in Algorithm 1. Similar to ADM, we use the alternative method to solve this optimization 
problem. To simplify the solution, we can fix the other variables (or suppose that they are 
known) such that the original multi-variable optimization problem is transformed into a single 
variable optimization problem. Then, with multiple iterations, the original problem can be 
eventually solved. We now discuss how to update the optimization variables in each iteration. 
A. Updating A 
    If A is unknown and the other variables are fixed, then A can be updated by minimizing 

( , , )f A E Y  with respect to A, as follows. 

             arg min ( , , )f A E Y 2
*arg min || || || ||

2 FA

YA D A Em
m

= + − − +  

                                         2
* 1/arg min || || || ( ) || ( )

2 FA

Y YA A D E D Em
m

mm
= + − − + = Γ − +                    (7) 

where 1/ 1/( ) ( ) TX US Vµ µΓ = S  and TU VΣ  is the singular value decomposition of the matrix X. 

1/ ( )S µ ⋅  is an absolute value shrinkage operator, defined by  

1/

1 1| | | |
( ( ))

0

ij ij
ij

X if X
S X

otherwise
µ µ µ

 − >= 


                                             (8) 

for ( ) m n
ij m nX x R ×

×= ∈  and 1 0
µ
> . 

B. Updating E 
    If E is unknown and the other variables are fixed, then E can be updated by minimizing 

( , , )f A E Y  with respect to E, as follows. 
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arg min ( , , )f A E Y 2
2,1arg min || || || ||

2 FE

YE D A Emλ
m

= + − − +  

                          2 2
2,1 2,1arg min || || || ( ) || arg min || || || ||

2 2F FE E

YE E D A E E Mmm λ λ
m

= + − − + = + −     (9)        

where YM D A
µ

= − + . Because of the non-smoothness of 2,1l , solving Eq.(9) exactly is highly 

nontrivial. In [52], Xiao et.al decomposed Eq. (9) into N subproblems of dimension M, i.e., 

,:

2
,: ,: 2 ,: ,: 2

ˆ min || || || ||
2i

i i i iE
E E E Mmλ= + − , 1,...,i N=                                (10) 

Additionally, by constructing the Lagrangian dual form, the closed-form solutions of Eq. (9) 
can be obtained as 

,: ,: 2
,: ,: 2

1 , || ||ˆ || ||

0

i i
i i

M if M
E M

otherwise

λ λ
µ µ

 
− ⋅ >  =  




                                 (11) 

where ,:
ˆ

iE denotes the ith row of the optimal solution Ê . 
C. Updating Y 
    Y is the Lagrange multiplier of the original optimization problem. It should be updated after 
the other variables. When Y is unknown and other variables are fixed, Y can calculated by 

( )Y Y D A Eµ= − − −                                                             (12) 
The algorithm for solving (6) is described in Algorithm 1. The stopping criterion is set as 

|| || / || ||F FD A E D ε− − <                                                        (13) 
where ε  is a small positive number. In addition, similar to RPCA and RGLRAM, to obtain 
better performance, the value of the parameter µ  will be tuned by ρ  in each iteration. The 
parameter ρ  is set to be larger than 1 [31], [33]. In our experiments, ρ  can be set as 
1 5ρ< < .  
 
 

Algorithm 1. Low-rank matrix decomposition with block sparsity 
(LDBS) 
Require: M ND R ×∈ , λ . 
Ensure: Initialize M NA O ×= , M NE O ×= , ρ , 10

max 10m = , 610ε −=   
while  || || / || ||F FD A E D ε− − <  
do 
    Step 1: Update A according to Eq. (8). 
    Step 2: Update E according to Eq. (11). 
    Step 3: Update Y according to Eq. (12). 
    Step 4: Update µ  as maxmin( , )m ρmm = . 
end while 
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4. Two-Stage Defect Extraction Based on Low-Rank Matrix 
Decomposition 

    According to Algorithm 1, a rail track image can be decomposed into a low-rank matrix and 
a block sparse matrix. The decomposition results of the four images in Fig. 1 are shown in Fig. 
3. 

                
                                       (a)                   (b)                   (c)                   (d)   

Fig. 3. Decomposition results using the LDBS algorithm. For each sub-figure, the left image is the 
low-rank matrix A, and the right image is the sparse matrix E in the Eq. (6). 

 
    According to Fig. 3, it can be seen that from the perspective of low-rank matrix recovery, 
the results of our algorithm are not good and are even worse than other low-rank matrix 
recovery method such as RPCA. We can see in Fig. 2(a) and (b) that the low-rank 
approximation images are much better than the results in Fig. 3(a) and (b). However, in Fig. 3, 
almost all the defect areas are clearly decomposed into the sparse matrix, especially the large 
defects, which is not possible in Fig. 2(c) and (d). The goal of our study is defect inspection, 
not low-rank image recovery, so the recovered low-rank image quality is not our key issue. 
Instead of focusing on the recovered low-rank image quality, we observed that because of the 
smoothness effect of the low-rank decomposition model, the defect areas will form dark 
stripes (indicated by the red circles in Fig. 3) that horizontally cross the entire recovered 
low-rank background image (i.e., the low-rank matrix A in the Eq. (6)). Even a small defect 
will produce a small dark stripe. These dark stripes reveal the row indexes of defect areas in 
the original image, and clearly distinguish them from other normal parts. According to this 
property, a two-stage defect extraction method is proposed in this section to locate the defect 
positions: In the first stage, the row indexes can be identified for each defect by the dark stripe 
in the low-rank image.  Because the rail track is narrow (the column number of the image is 
much less than the row number), once the row indexes of the defect are detected, the defect 
will be limited in a small image block. In the second stage, the column indexes of the defect 
area can be easily identified within the small image block by performing some simple 
operations.  

4.1 First Stage: Finding the Row Indexes of Defect Areas 
    To determine the upper and lower row bounds of each defect, we first draw a column (the 
values in this column are normalized into [0,1] by dividing the maximum absolute value in this 
column) of the obtained matrix A, as shown in Fig. 4.  
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    Fig. 4 shows that the pixel values within the defect areas will be much smaller than others, 
and the dark stripes form several peaks. Thus, we only need to find the indexes of the peaks to 
locate the positions of the defects. 
    As seen in Fig. 3, the illumination of the rail tracks varies within an image. To enlarge the 
gaps between the peaks and other normal points in one column, we select the brightest column 
in a rail track image as the column to  find the start and end points of the peaks. The column 
selection criterion is as follows. 

1
arg max{ }

M

ijj i
J a

=

= ∑                                                        (14) 

where ija  is the pixel value in the (i,j)th position of M NA R ×∈ , J  is the column index used for 
peak detection. 
 

  
                                            (a)                                                      (b) 

  
                                            (c)                                                       (d) 

Fig. 4. Plots of the first column corresponding to the four obtained low-rank matrices shown in Fig. 3. 

 
    After the column is selected by Eq. (14), denoted as :,Ja , a threshold τ  is set to this column: 

,
,

,

0,
1,

i J
i J

i J

a
a

a
τ

τ

<=  ≥
                                                       (15) 

where :,( )Jmean aτ β= ⋅ , β  is a constant and :,( )Jmean a  is the average value of the column :,Ja . 
We call this operation column binarization. An example of column binarization is shown in 
Fig. 5(b). It can be seen that there are a total of four peaks in Fig. 5(b). However, the two peaks 
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marked by the red rectangles only have one point at the top, which corresponds to two tiny 
defects. We do not consider tiny defects since they will not affect train safety. Thus, such 
peaks should be removed. To do this, we  simply measure the width of each peak and remove 
the ones with widths less than or equal to q points. The result after peak removal is shown in 
Fig. 5(c). For comparison, Fig. 5(d) shows the sparse matrix E obtained by Eq.(5). To align it 
with the other three sub-figures, below is the transpose of E.  
 

 
(a) 

 
(b) 

 
(c) 

        
(d) 

Fig. 5. Column binarization and tiny peak removal. (a) The column of low-rank matrix A in Fig. 3(d) 
selected for peak detection; (b) Column binarization result; (c) The result after peak removal. (d) Sparse 

image of Fig. 3(d). 
 
 
    Through the above column binarization and peak removal operations, we can identify the start 
and end points of each peak, which correspond to the vertical bounds of the defects. The red 
rectangles in Fig. 6 indicate the defect areas.  
 
 

            
                                    (a)                                                                            (b) 
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                                       (c)                                                                        (d) 

Fig. 6. Defect detection results. 

4.2 Second Stage: Finding the Column Indexes of the Defect Areas    
    After the vertical index bounds of the defects are obtained, the image blocks containing the 
complete defect area can be cropped from sparse image E. In the cropped image blocks, the 
background is much smoother than in the original defect image, which is the influence of the 
original defect image background being almost completely removed by applying Algorithm 1. 
Additionally, because we use the block sparsity decomposition model, both the small and large 
defects can be decomposed into the sparse image. Therefore, we can simply binarize the image 
blocks (areas indicated by red rectangles in Fig. 6) to obtain the exact defect areas. In other 
words, the horizontal column index bounds of the defect areas can be determined by the 
maximal-connected  component in the binarized image block. Fig. 7 shows an example of the 
second stage of the image shown in Fig. 6(b). 
 
                 (a)         
                 (b)        
                 (c)         

Fig. 7. Process to find the column indexes of the defects. (a) Image blocks cropped from the sparse 
image E (image blocks in red rectangles, Fig. 6(b)). (b) Image block binarization results. (c) Results 

obtained by keeping the maximal-connected component. 
 

    Finally, the defect areas can be marked in the original rail track images. The defect detection 
results of the 4 images in Fig. 1 are shown in Fig. 9. The complete process  proposed in this 
paper is summarized in the following flowchart. 
 
 
 
 
 
 
 
 
 

Fig. 8. Flowchart of the proposed rail track defect detection process. 

Rail track 
image D 

Decompose D 
by Algorithm 1 

Select the brightest 
column of the low-rank 
matrix A by Eq. (14). 

Binarize 
the column 
by Eq. (15) 

Find the row indexes 
of defect areas by the 

1st stage 

Find the column 
indexes of defect areas 

by the 2nd stage 

Output the defect 
detection results 
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                                      (a)                    (b)                  (c)                    (d) 

Fig. 9.  Defect inspection results of the 4 images in Fig. 1. 

5. Experiment Results 
    To evaluate our proposed algorithm, two datasets are used in our experiments in the same 
way they were used in [13]. The first is a Type-I RSDDs dataset of 67 images captured from 
high-speed rails. The second is a Type-II RSDDs dataset of 128 images captured from 
common/heavy-haul rails. Several image examples for both types are shown in Fig. 11 and Fig.  
12. The experiments are conducted in Matlab  2016b with a Surface 3 laptop. Pixel-level and 
defect-level criteria are used to evaluate the performances of our algorithm. Both criteria are 
based on the common criteria of Precision, Recall and F-measure (abbreviated as Pre, Rec and 
F, respectively). They are defined as follows: 

A. Pixel-level criterion:  
    In this situation, Pre, Rec and F are defined as: 

/( )Pre TP TP FP= )  
/( )Rec TP TP FN= )                                                     (16) 

2* * /( )F Pre Rec Pre Rec= )  
where TP denotes the number of correctly detected pixel points, FP is the number of falsely 
detected pixel points, and FN is the number of undetected defect pixel points. In addition, a 
higher F-measure means that the detection result is consistent with human judgment. Note that 
the values we shown in this section are the average values for the whole dataset. 

B. Defect-level criterion:  
    Pre', Rec' and F' are defined as:  

/dPre = TP P′  
/dRec = TP N′ ′                                                          (17) 

2 /( )F = Pre Rec Pre Rec′ ′ ′ ′ ′∗ ∗ +  
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where dTP  denotes the number of correctly detected defects, dTP′  is the number of correctly 
detected defects mapping to ground truth, P refers to the total number of detected defects, and 
N refers to the total number of labeled defects in the ground truth. Suppose that the ths  defect 
area is denoted as ( )area s  and the defect area in the groundtruth image is denoted  as 

( )area GT , then dTP  is defined as  

1

( ) ( )( 0.8)
( )

P

d
s

area s area GTTP
area s=

∧
= >
G

                                       (18) 

dTP′ is defined as  

1

( ) ( )( 0.8)
( )

P

d
s

area s area GTTP
area GT=

∧′ = >
G

                                       (19) 

Here, ( )
s

⋅


counts the number of s that satisfies the condition shown in the brackets. ∧denotes 

the intersection.  
    In our algorithm, there are two parameters that need to be adjusted. One is q (decides the 
size of the defects that can be detected by our algorithm), the other is β (decides the threshold 
τ ). Since tiny defects can be ignored here, we set q=3, which means that if the defect height is 
smaller than 3 pixels, the defect will not be detected. For β , 20% of the images are randomly 
chosen to evaluate the proposed method. The relationship between the value of β  and the 
F-measure are shown in Fig. 10. It can be seen that for the Type-I RSSDs, the best 
performance is achieved when 0.97β = , while the best performance is achieved when 0.88β =  
for Type-II RSSDs. Thus, these two values are selected in the final testing. 
 

             
                                      (a)                                                                                  (b) 

Fig. 10. Relations between β  and F-measure values. (a) Type-I RSSDs; (b) Type-II RSSDs. 
 

    We compared our defect inspection results with several well-established methods, i.e., 
LN+DLBP[12], MLC+PEME[11], the method in [37], and CFE[13]. The performances of all  
four methods are compared in [13], so we can just use the results shown in Tables 1 and 2 in 
[13]. It should be noted that LN+DLBP locates defects by bounding boxes, and the method in 
[37] detects contours to locate possible defects. Therefore, pixel-level criterion is not suitable 
for these two methods. In the Step 4 of our proposed Algorithm 2, a binarization operation is 
performed for the small areas obtained in Step 3, and the defect areas can be obtained in a 
pixel-wise manner. Thus, both the defect-level and pixel-level criteria are suitable for our 
algorithm. The results are compared and presented in Tables 1 and 2. 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019                             6057 

Table 1. Comparison of our method and other methods for the Type-I RSDDs dataset. 
Method Pre Rec F Pre' Rec' F' 
LN+DLBP[12] - - - 76.26 70.8 73.43 
MLC+PEME[11] 78.14 78.89 75.7 47.48 85.4 61.35 
Method in [37] - - - 41.19 72.94 52.65 
CFE[13] 87.54 85.63 85.12 93.02 85.4 89.05 
LDBS(Ours) 84.32 92.45 88.2 86.67 94.89 90.59 

 
Table 2. Comparison of our method and other methods for the Type-II RSDDs dataset . 

Method Pre Rec F Pre' Rec' F' 
LN+DLBP[12] - - - 88.89 71.82 79.45 
MLC+PEME[11] 73.88 83.05 76.05 58.68 91.71 71.56 
Method in [37] - - - 49.73 46.41 48.01 
CFE[13] 83.88 83.58 82.11 91.91 83.98 87.76 
LDBS(Ours) 84.56 90.34 87.36 86.29 93.92 89.95 

    
 The two tables above show that our algorithm achieves better performance compared to 
others. This is especially ture for the recall since a higher recall value means that more defects 
labeled in the ground truth are detected correctly. However, the precision of our algorithm is 
not always the best. This means that our algorithm has a high level of false detection. However, 
the F-measure of our algorithm is higher than others. Finally, some of the detection results are 
shown in Fig. 11 and 12 for Type-I and Type-II RSSDs, respectively. It should be noted that 
the subfigures (b)-(e) all come from [13], so we just added our result in subfigure (f) for 
comparison. These figures indicate the defects detected with red rectangles, which clearly 
show the accuracy of the detected defect bounds.  
 

  
                                          (a)       (b)        (c)        (d)        (e)          (f) 
Fig. 11.  Several inspection results using different methods with the Type-I RSDDs dataset. (a) defect 
part (b) ground truth (c) LN+DLBP (d) MLC+PEME (e) Method in [37] (f) our method.  
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                                        (a)         (b)         (c)         (d)         (e)        (f) 
Fig. 12. Several inspection results using different methods with the Type-II RSDDs dataset. (a) defect 

part (b) ground truth (c) LN+DLBP (d) MLC+PEME (e) Method in [37] (f) our method. 

6. Conclusions 
    In this paper, we proposed a block sparse low-rank matrix decomposition based rail track 
visual inspection method to address the problem that traditional low-rank matrix 
decomposition algorithms cannot deal with large defects. Because the rail track is narrow, a 
large defect in the rail track will be treated as image background, so it cannot be decomposed 
well into the sparse foreground. Thus, the 2,1 norm is used in our decomposition model and 
the large defect areas are treated as block-sparse areas. After decomposition, the defect areas 
in the resulting low-rank background will form dark stripes that horizontally cross the entire 
image, indicating the precise locations of the defects. Finally, defect areas can be easily 
detected after simple thresholding and binarization processes. The experiment results showed 
the superiority of our algorithm compared to other methods, especially for the recall, as we 
achieved about a 10% improvement on the two test datasets.  
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