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1. INTRODUCTION   

Humans have two types of age: chronological

and biological. Chronological age is the number of

years a person is alive, while biological age is a

measure of how aging progress has affected your

body. The study by Belsky et al. [1] indicates that;

some young adults are aging three times faster

than others; the aging processes can be assessed

in young adults and be used to prevent age-related

illness, opening a new direction for anti-aging

therapies. The increased aging rate increased the

incidence of age-related illnesses. Demand for an-

ti-aging intervention to reduce the burden of ill-

ness and protect the productive population is high.

Young adults are the best subject for therapies to

prolong health due to it can still prevent illness in

young adults.
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The age estimation is an important aspect in the

line of work of health informatics, forensic science

and anthropology. The approach to quantify the bi-

ological age of the brain of an adult using neuro-

imaging has attracted a lot of attention in recent

years [2-4]. This interest in brain age prediction

is promoted by the importance of biological age es-

timation in health informatics, which is extremely

significant before neurodegeneration manifests

through cognitive impairment and dementia.

In addition, recent studies indicate the relation-

ship between the aging process bones and bone

degradation diseases [5–7] as well as the age-re-

lated bone uptake of Tc-99m-HDP measured by

whole-body bone scintigraphy [8-11]. To quantify

the biological age of bone of an adult before the

appearance of significant bone degeneration, bone

age estimation (BAE) method using whole-body

bone scintigraphy based on multiple inputs deep

neural networks was proposed. Bone scintigraphy

[12] is a diagnostic imaging technique of nuclear

medicine has high sensitivity. This technique uses

radioactivity to assess the distribution of active

bone formation in the skeleton related to malignant,

and benign diseases, as well as physiological

processes. It is a sensitive technique that can de-

tect early significant metabolic changes before

they become apparent in conventional X-ray

images. Moreover, it also provides an overview of

the entire skeleton. This study’s experiment results

demonstrate the effectiveness of the proposed

method.

The structure of this paper is as follows: the re-

lated works are introduced in Section II, the pro-

posed method is described in Section III, the ex-

perimental results are detailed in Section IV and

the conclusions are given in Section V.

2. RELATED WORKS

The development of bones of left hand from fin-

gertips to wrist [13], the presence of ossification

centres, and the fusion of the epiphyses [14, 15]

can be used in children. The development of the

third molar [16], the development of bones of left

hand from fingertips to wrist [13, 17], the sphe-

no-occipital fusion [18, 19] and the fusion of ster-

num [20, 21] are appropriate indicators for adoles-

cents and young adults.

Adserias-Garriga et al. [22] showed that in the

above cases, the skeleton's age indicators are

based on an individual's growth; but when the

growth is over, the skeleton’s age indicators are

based on degenerative changes and the age esti-

mation accuracy decreases as individual’s age

increases. Indicators of bone age in adults include

the pubic symphysis [23, 24], the sacropelvic sur-

face of the ilium [25], and the acetabulum [26].

Lottering et al. [27] conducted the prediction of

adult age using multislice CT scans of the pubic

symphysis. The mean error of this method was

7.24 years for individuals less than 55 years old and

5.89 for individuals above 55 years old.

Lovejoy et al. [25] proposed a method for esti-

mating adult bone age based on the sacropelvic

surface of the ilium. The mean error of this method

is 7.8 years.

San-Millán et al. [28] suggested a new approach

to predict the age of adults based on the morpho-

logical characteristics of the acetabulum. The

method has an average absolute error of 7.28 years

and 7.09 years for males and females, respectively,

based on the specific gender reference patterns.

Besides, other methods have been developed to

estimate the age of an adult individual such as te-

lomere shortening analyzes and recently epigenetic

modifications [29]. Various studies showed that

during the aging process, telomeres are shortened

[30, 31]. Thus, some researchers studied them to

predict age [32, 33, 34]. Ren et al. [32] achieved a

mean prediction error of 9.213 years with this

technique.

Recently, age estimation from the correlation

between methylation levels and age has grown
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rapidly. Bekaert et al. [29] achieved a mean error

of 3.75 years for blood samples and a mean error

of 4.86 years for dentine samples. There were no

differences in results for samples obtained from

dead and alive individuals or between two genders.

3. PROPOSED METHOD

This section presents the details of the multiple-

input models that are trained by the mean-variance

loss to automatically BAE using whole-body bone

scintigraphy. The architecture and parameters of

the proposed VGG model are designed to optimize

its performance on age estimation based on whole-

body bone scintigraphy and is shown in Fig. 1.

A multiple inputs VGG16 model for BAE were

proposed. The proposed base models are two

VGG16 models pre-trained on the ImageNet data

set. Two inputs to the proposed VGG16 models are

224 × 224 × 3 RGB images. VGG16 model includes

five 2D convolutional blocks (CBs). The two early

CBs have two convolutional layers (CLs). The

three last convolutional blocks have three CLs. The

numbers of feature maps in each convolution block

are 64, 128, 256, 512, 512. Each 2D convolutional

layer has a kernel size of 3 × 3 and each convolu-

tional block ends with one max pooling layer.

A global spatial average pooling layer was added

to each VGG16 model. Each VGG16 model also in-

cludes two fully connected layers of 320, 160 neu-

rons each. The outputs of these two branches are

combined by concatenation layer. Then fully con-

nected layers of 160 neurons are applied. The non-

linear mapping functions are set up as rectified lin-

ear unit for all CLs and these fully connected

layers. In addition, a drop out of 0.2 is used after

each fully connected layer. The output layer of the

proposed model contains a softmax layer.

The proposed model is trained by joint loss,

which includes softmax loss and mean-variance

loss [35] as follows:

L = Ls + Lm + Lv (1)

where and are two hyperparameters to balance

the influence of sub-losses in the joint loss.

The softmax loss is computed as:

Ls = 


  



 log  (2)

The mean loss is computed by the formula:

Lm =


  




  






(3)

and the variance loss is computed as follows:

Lv = 


  




  



 
  






(4)

where N is the batch size, i is the i-th of sample,

Fig. 1. The proposed model.
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j ∈ {1, 2, ... , K} expresses label of classes; pi ex-

presses the distribution of sample i over all classes

and pi,j expresses the probability that sample i be-

longs to class j. In the test phase, estimated bone

age is calculated as follows:

yt =
  



  (5)

4. EXPERIMENT

4.1 Data set   

The data set was collected from Chonnam

National University Hwasun Hospital. IRB number

is CNUHH-2019-177. Each person has anterior and

posterior images, along with age and gender as

shown in Fig. 2.

The data set contains 8948 images of 4474 sub-

jects, ranging from 40 to 80 years old. The ratio

of females to males is approximately 1,69: 1. The

distribution of ages for females and males are

shown in Fig. 3. Five-fold cross-validation was

used to evaluate model performance.

4.2 Results   

The input of the proposed model is anterior and

(a) Age: 43, Gender: Female (b) Age: 42, Gender: Male

Fig. 2. The anterior and posterior of whole-body bone scintigraphy. 

(a) Females (b) Males

Fig. 3. The distribution of ages for females and males. 
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posterior of whole-body bone scintigraphy. The

proposed model is trained with the joint loss (JL)

which includes softmax loss and mean-variance

loss function using the Adam optimizer with a 1e-4

learning rate and a batch size of 64 samples. During

the training phase, the learning rate will decrease

by 10 times after 15 iterations without improving

validation loss.

To compare with the proposed method, experi-

ments with mean square error (MSE) loss, softmax

loss and the JL function on VGG16 [36], ResNet50

[37, 38], Inception v3 [39] models, which are pre-

trained on the ImageNet data set [40]. Their input

is anterior of whole-body bone scintigraphy. The

MSE is calculated as follows:

MSE = 


  




∧  

 (6)

The models were evaluated by mean absolute

error (MAE) and Pearson correlation (r) between

predicted age and actual age:

MAE = 


  




∧   (7)

r =





  




∧  ∧ 

  



 



  




∧ ∧  



(8)

where ∧ and  are the means of the predicted age

and actual age.

The performance comparison table between the

proposed model and other models are listed in

Table 1. When the models are trained with mean-

variance loss, they achieve superior performance.

The proposed method outperforms the other mod-

els with mean absolute error (standard deviation)

of 3.40 (2.87) years and Pearson’s r is 0.91 (p-value

< 0.0001). Fig. 4 shows the predictions of the pro-

posed method.

Table 1. The performance for proposed algorithm and conventional algorithms

Model Method MAE (years) r

InceptionV3

Mean squared loss 3.73 (3.05) 0.90

Softmax loss 7.69 (6.02) 0.54

Softmax + Mean-Variance loss 4.59 (3.78) 0.84

ResNet50

Mean squared loss 3.75 (3.04) 0.90

Softmax loss 7.27 (6.30) 0.59

Softmax + Mean-Variance loss 4.56 (3.77) 0.84

VGG16

Mean squared loss 3.92 (3.15) 0.89

Softmax loss 4.42 (3.94) 0.85

Softmax + Mean-Variance loss 3.59 (3.04) 0.90

Multiple inputs VGG16
(proposed)

Mean squared loss 3.75 (3.04) 0.90

Softmax loss 4.24 (3.74) 0.86

Softmax + Mean-Variance loss 3.40 (2.87) 0.91

Fig. 4. The prediction of the proposed method. The dots, 

line and dash line are the predicted age, perfect 

prediction and mean absolute error, respectively.
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5. CONCLUSION

This study proposed multiple inputs VGG 16

model. The proposed model is trained with the joint

loss which includes softmax loss and mean-var-

iance loss function to assess bone age using

whole-body bone scintigraphy. Experiment results

show the effectiveness of the proposed method

with a mean absolute error of 3.40 years. We are

going to improve the result by using gender in fu-

ture works.
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