DOI QR코드

DOI QR Code

Application of a Peptide Nucleic Acid-Based Asymmetric Real-Time PCR Method for Rapid Detection of Vibrio cholerae

비브리오 콜레라 신속 검출을 위한 펩티드 핵산 기반 비대칭 real-time PCR 방법의 적용

  • Kang, Mingyeong (Ecological Risk Research Division, Korea Institute of Ocean Science and Technology) ;
  • Lee, Taek-Kyun (Ecological Risk Research Division, Korea Institute of Ocean Science and Technology)
  • 강민경 (한국해양과학기술원 생태위해성 연구부) ;
  • 이택견 (한국해양과학기술원 생태위해성 연구부)
  • Received : 2019.08.13
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

Vibrio cholerae is a very important pathogenic bacterium that has to be monitored in seafood and ships' ballast water. Various methods have been developed to identify this bacterium, yet these methods are time-consuming and have limitations for their sensitivity to detect contamination. The purpose of the present study was to develop a robust and reliable method for identifying V. cholerae. Peptide nucleic acid (PNA) probes were developed to use for PNA-based asymmetrical real-time PCR techniques. The toxigenic Cholera enterotoxin subunit B (ctxB) gene was selected as a target for detecting V. cholerae and the gene was synthesized as a positive template for conventional and real-time PCR. Real-time PCR primers and PNA probes were designed and standard curves were produced for the quantitative analysis. The selected PNA probes reacted specifically to V. cholerae without any ambiguity, even among closely related species, and the detection limit was 0.1 cfu/100 mL. Taken together, the PNA probes and asymmetrical qPCR methods developed in this present study could contribute to the rapid, accurate monitoring of V. cholerae in marine environments, and as well as in seafood and ships' ballast waters.

비브리오 콜레라는 수산물과 선박평형수 내에서 모니터링되고 있는 중요 병원성 박테리아이다. 이를 검출하기 위한 여러 방법들이 개발되어 왔으나, 시간 소모가 크고 민감도에서 한계가 있었다. 본 연구는 비브리오 콜레라를 보다 정확하게 검출하기 위한 방법을 개발하는 목적으로 수행하였다. PNA 기반 비대칭 real-time PCR 기술에 적용하기 위하여 펩티드 핵산(Peptide nucleic acid, PNA) 프로브를 개발하였다. 독성 유전자인 Cholera enterotoxin subunit B (ctxB)를 비브리오 콜레라 검출을 위한 타겟 유전자로 선정하고, conventional PCR과 real-time PCR을 위한 positive template를 합성하였다. Real-time PCR 프라이머와 PNA 프로브를 디자인하여, 정량 분석을 위한 표준곡선 실험을 수행하였다. 선택된 PNA 프로브는 비브리오 콜레라에 특이적으로 반응하였으며, 검출한계는 0.1 cfu/100 mL이었다. 종합해 보면, 본 연구에서 개발된 PNA 프로브와 비대칭 real-time PCR 방법은 수산물과 선박평형수 뿐만 아니라 해양환경에 있는 비브리오 콜레라를 신속하고 정확하게 모니터링할 수 있는 기술로 판단된다.

Keywords

References

  1. Faruque, S.M. and G.B. Nair, "Molecular ecology of toxigenic Vibrio cholerae", Microbiology and immunology, Vol.46, No.2, pp.59-66, 2002. DOI: https://doi.org/10.1111/j.1348-0421.2002.tb02659.x
  2. Farmer III JJ, J.J., Brenner FW, Cameron DN, Birkhead KM, Bergey's Manual(R) of Systematic Bacteriology. p.494-546, Springer US, 2005. DOI: https://doi.org/10.1007/0-387-28022-7
  3. Messelhausser, U., J. Colditz, D. Tharigen, W. Kleih, C. Holler, and U. Busch, "Detection and differentiation of Vibrio spp. in seafood and fish samples with cultural and molecular methods", International journal of food microbiology, Vol.142, No.3, pp.360-4, 2010. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.07.020
  4. Darling, J.A. and R.M. Frederick, "Nucleic acids-based tools for ballast water surveillance, monitoring, and research", Journal of sea research, Vol.133, pp.43-52, 2018. DOI: https://doi.org/10.1016/j.seares.2017.02.005
  5. Kim, I.H., B.S. Kim, K.S. Lee, I.J. Kim, J.S. Son, and K.S. Kim, "Identification of virulence factors in vibrio vulnificus by comparative transcriptomic analyses between clinical and environmental isolates using cDNA microarray", Journal of microbiology and biotechnology, Vol.21, No.12, pp.1228-35, 2011. DOI: https://doi.org/10.4014/jmb.1111.11016
  6. Li, S., H. Liu, Y. Deng, L. Lin, and N. He, "Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens", Journal of biomedical nanotechnology, Vol.9, No.7, pp.1254-60, 2013. DOI: https://doi.org/10.1166/jbn.2013.1610
  7. Chen, A., M.N. Tamburri, R.R. Colwell, and A. Huq, "Potential application of SMART II for Vibrio cholerae O1 and O139 detection in ship's ballast water", Marine pollution bulletin, Vol.136, pp.79-83, 2018. DOI: https://doi.org/10.1016/j.marpolbul.2018.08.029
  8. Engku Nur Syafirah, E.A.R., A.B. Nurul Najian, P.C. Foo, M.R. Mohd Ali, M. Mohamed, and C.Y. Yean, "An ambient temperature stable and ready-to-use loop-mediated isothermal amplification assay for detection of toxigenic Vibrio cholerae in outbreak settings", Acta tropica, Vol.182, pp.223-231, 2018. DOI: https://doi.org/10.1016/j.actatropica.2018.03.004
  9. Greig, D.R., T.J. Hickey, M.D. Boxall, H. Begum, A. Gentle, C. Jenkins, and M.A. Chattaway, "A real-time multiplex PCR for the identification and typing of Vibrio cholerae", Diagnostic microbiology and infectious disease, Vol.90, No.3, pp.171-176, 2018. DOI: https://doi.org/10.1016/j.actatropica.2018.03.004
  10. Awasthi, S.P., N. Chowdhury, S.B. Neogi, A. Hinenoya, N. Hatanaka, G. Chowdhury, T. Ramamurthy, and S. Yamasaki, "Development of a multiplex PCR assay for the detection of major virulence genes in Vibrio cholerae including non-O1 and non-O139 serogroups", Journal of microbiological methods, Vol.157, pp.54-58, 2019. DOI: https://doi.org/10.1016/j.mimet.2018.12.012
  11. Zhang, X., K. Li, S. Wu, J. Shuai, and W. Fang, "Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments", International journal of food microbiology, Vol.206, pp.39-44, 2015. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.04.017
  12. Noh, E.S., H.S. Kang, E.M. Kim, J.K. Noh, J.Y. Park, T.-J. Choi, and J.-H. Kang, "Rapid Differentiation of Seven Species of Anguilla Using PNA Clamping-based Asymmetric PCR with Fluorescence Melting Curve Analysis", BioChip Journal, Vol.12, No.1, pp.46-51, 2018. DOI: https://doi.org/10.1007/s13206-017-2106-y
  13. Choi, Y.J., H.S. Kim, S.H. Lee, J.S. Park, H.S. Nam, H.J. Kim, C.J. Kim, D.J. Jeong, K.S. Park, and K.A. Baek, "Evaluation of peptide nucleic acid array for the detection of hepatitis B virus mutations associated with antiviral resistance", Archives of virology, Vol.156, No.9, pp.1517-24, 2011. DOI: https://doi.org/10.1007/s00705-011-1019-7
  14. Kim, J.W., Y.J. Choi, H.J. Kim, J.S. Park, H.S. Nam, Y. Hwangbo, D.U. Kim, and K.S. Park, "Comparison of PNA probe-based real-time PCR and Cobas TaqMan MTB for detection of MTBC", BioChip Journal, Vol.7, No.2, pp.85-88, 2013. DOI: https://doi.org/10.1007/s13206-013-7201-0
  15. Cerqueira, L., N.F. Azevedo, C. Almeida, T. Jardim, C.W. Keevil, and M.J. Vieira, "DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH)", International journal of molecular sciences, Vol.9, No.10, pp.1944-60, 2008. DOI: https://doi.org/10.3390/ijms9101944
  16. Peleg, A.Y., Y. Tilahun, M.J. Fiandaca, E.M. D'Agata, L. Venkataraman, R.C. Moellering, Jr., and G.M. Eliopoulos, "Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa", Journal of clinical microbiology, Vol.47, No.3, pp.830-2, 2009. DOI: https://doi.org/10.1128/jcm.01724-08
  17. Jeong, S., J.O. Kim, S.H. Jeong, I.K. Bae, and W. Song, "Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates", Journal of microbiological methods, Vol.113, pp.4-9, 2015. DOI: https://doi.org/10.1016/j.mimet.2015.03.019
  18. Sakai, J., T. Maeda, N. Tarumoto, K. Misawa, S. Tamura, K. Imai, T. Yamaguchi, S. Iwata, T. Murakami, and S. Maesaki, "A novel detection procedure for mutations in the 23S rRNA gene of Mycoplasma pneumoniae with peptide nucleic acidmediated loop-mediated isothermal amplification assay", Journal of microbiological methods, Vol.141, pp.90-96, 2017. DOI: https://doi.org/10.1016/j.mimet.2017.08.009
  19. Patel, N., D. Miller, N. Relhan, and H.W. Flynn, Jr., "Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Detection of Staphylococci From Endophthalmitis Isolates: A Proof-of-Concept Study", Investigative ophthalmology & visual science, Vol.58, No.10, pp.4307-4309, 2017. DOI: https://doi.org/10.1167/iovs.17-21535
  20. Nielsen, P.E., M. Egholm, R.H. Berg, and O. Buchardt, "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide", Science (New York, N.Y.), Vol.254, No.5037, pp.1497-500, 1991. DOI: https://doi.org/10.1126/science.1962210
  21. Nielsen, P.E., "Peptide nucleic acids (PNA) in chemical biology and drug discovery", Chemistry & biodiversity, Vol.7, No.4, pp.786-804, 2010. DOI: https://doi.org/10.1002/cbdv.201000005
  22. D'Agata, R., M.C. Giuffrida, and G. Spoto, "Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis", Molecules (Basel, Switzerland), Vol.22, No.11, 2017. DOI: https://doi.org/10.3390/molecules22111951
  23. Corradini, R., "Special Issue: Molecular Properties and the Applications of Peptide Nucleic Acids", Molecules (Basel, Switzerland), Vol.23, No.8, 2018. DOI: https://doi.org/10.3390/molecules23081977
  24. Bhuiyan, N.A., S. Nusrin, M. Alam, M. Morita, H. Watanabe, T. Ramamurthy, A. Cravioto, and G.B. Nair, "Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes", FEMS immunology and medical microbiology, Vol.57, No.2, pp.136-41, 2009. DOI: https://doi.org/10.1111/j.1574-695X.2009.00590.x
  25. Kumar, P. and S. Thomas, "Classical ctxB gene in Vibrio cholerae O1 and O56 serogroups from Kerala, South India", Journal of medical microbiology, Vol.60, No.Pt 4, pp.559-60, 2011. DOI: https://doi.org/10.1099/jmm.0.024752-0