DOI QR코드

DOI QR Code

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train

고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석

  • Oh, Hyuck Keun (High Speed Railway Research Team, Korea Railroad Research Institute) ;
  • Beak, Seung-Koo (High Speed Railway Research Team, Korea Railroad Research Institute) ;
  • Jeon, Chang-Sung (High Speed Railway Research Team, Korea Railroad Research Institute)
  • 오혁근 (한국철도기술연구원 고속철도연구팀) ;
  • 백승구 (한국철도기술연구원 고속철도연구팀) ;
  • 전창성 (한국철도기술연구원 고속철도연구팀)
  • Received : 2019.09.11
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

전기기계식 제동장치(EMB : Electro Mechanical Brake)는 자동차 및 철도차량의 차세대 제동장치로서 현재 연구가 활발히 진행되고 있다. 현재의 고속열차용 제동장치는 공압 실린더를 이용하여 제동 압부력을 발생시키나 전기기계식 제동장치 (EMB)에서는 전기 모터 및 기어와의 조합을 통하여 압부력을 발생시킨다. 본 연구에서는 고압부력 발생이 가능한 EMB 구동 메커니즘을 제안하고, 해당 메커니즘을 만드는 기구장치 중 핵심부품인 기어 및 샤프트 부품들에 대한 구조 및 진동해석을 수행하였다. 한편 모델에 대한 동적 진동해석 결과 압부력이 가해진 상태에서 외부가진이 주어졌을 때 부재의 최대 응력이 항복강도 이내임이 확인되었다. 또한, 구조해석 결과 모터샤프트의 축 직경을 최대한 크게하는 설계가 강도 상 유리함을 확인하였으며, 기어와 편심샤프트를 고정하는 볼트에서 큰 전단응력이 발생할 수 있음을 확인하였다. 한편 해석모델의 메커니즘을 재현할 수 있는 시험장치를 제작하여 가장 취약한 부위인 고정 볼트부의 변형률을 구동 토크가 가해진 상태에서 측정하였다. 변형률 측정결과는 해석결과와 오차가 10% 이내로서, 해석모델의 정확도를 검증할 수 있었다.

Keywords

References

  1. CER, EMI and UIC, Challenge 2050-The Rail Sector Vision, International Union of Railways (UIC), 2013.
  2. European Railway Sector, Shift2Rail Joint Undertaking Multi-Annual Action Plan, European Union Funding for Research & Innovation, 2015.
  3. R. T. Bannatyne, "Advances and challenges in electronic braking control technology", SAE Technical Papers, 1998.
  4. M. Sundar, D. Plunkett, "Brake-by-Wire Motivation and Engineering-GM Sequel", SAE Technical Papers, 2006.
  5. S-K. Baek, H. K. OH, M-h Kwak, S-W. Kim, "A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train", Journal of The Korea Academia-Industrial cooperation Society, Vol.19, No.4, pp.578-585, Apr. 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.4.578
  6. M. S. Kim, S. C. OH, S. J. Kwon, "Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles", Journal of the Korean Society for Precision Engineering, Vol.33, No.7, pp.535-540, Jul. 2016. DOI: https://doi.org/10.7736/KSPE.2016.33.7.535
  7. BS EN 13260:2009+A1:2010 Railway Applications - Wheelsets and bogies - Wheelsets - Product requirements, April 2009.
  8. ABAQUS/CAE User's Guide, ABAQUS 2016.