DOI QR코드

DOI QR Code

Effects of Functional Insole on Walking in the Elderly

기능적 인솔이 노인의 보행에 미치는 영향

  • 서동권 (건양대학교 물리치료학과)
  • Received : 2019.10.24
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

This study verified the difference in biomechanical variation and the pattern of the lower limb between using or not using functional insoles on the gait of elderly people. Ten females subjects were selected (age: 73.2 years, height: 152.1 cm, body mass: 59.4 kg) for testing their gait with using functional insoles and without using functional insoles. The gait motions were captured with the Qualisys system and the gait parameters were calculated with Visual-3D. As a result, the subjects' stride length and swing time were significantly increased (p<.05). Also, the lower limb's extension moment was significantly increased (p<.05) when using the insole. These differences suggest the functional insole used in the experiment increases the subjects' gait stability. However, to generalize the results of this study, it is necessary to accumulate more quantitative data with more subjects. Further studies to examine gait variables and changes of walking patterns need to be conducted by gathering and utilizing the results of those subjects who have used insoles for a long period of time.

본 연구는 발의 피로와 통증을 줄이고 발의 정상적인 기능을 유지해주는 기능적 인솔 적용 유무가 노인 보행 시 하지의 생체 역학적 변인 및 패턴에 미치는 영향을 규명하고자 하였다. 본 연구의 대상자는 10명(연령, 73.2 세: 신장, 152.1 cm: 체중, 59.4 kg)이며, 기능적 인솔 착용과 비 착용 시의 보행을 분석하였다. 보행분석은 퀄리시스 시스템 (Qualisys system)으로 촬영 후 비쥬얼 3D (Visual-3D)로 분석하였다. 그 결과, 기능적 인솔을 착용했을 경우, 보장과 유각기 속도가 유의미하게 증가하였다 (p<.05). 또한 하지의 신전 모멘트가 입각기에서 유의미하게 증가하였다 (p<.05). 본 연구 결과 기능적 인솔은 노인의 보행 안정성을 향상시는 효과가 있었다. 그러나 이 연구의 결과를 일반화하기 위해서는 더 많은 대상자들을 통해 보다 많은 정량적 자료를 축적할 필요가 있으며, 대상자들에게 오랜 시간동안 인솔을 사용하게 한 후 보행변인 및 패턴의 변화를 검토하는 연구가 추후 이뤄져야 할 것으로 판단된다.

Keywords

References

  1. Korean Association of Anatomists.(2019). Human Anatomy(3rd Ed.). Seoul, Hyunmoon. ISBN(979-11-5989-922-5)
  2. R. Mohsen & E. Mark Foot type classification: a critical review of current methods. Gait & Posture, 15, 282-291. 2002. DOI:https://doi.org/10.1016/S0966-6362(01)00151-5
  3. D. J. Lott, M. K. Hastings, P. K. Commean, K. E. Smith & M. J. Muller. Effect of footwear and orthotic devices on stress reduction and soft tissue strain of the neuropathic foot. Clinical Biomechanics, 22, 352-359. 2007. DOI:https://doi.org/10.1016/j.clinbiomech.2006.10.010
  4. S. B. Choi & W. J. Lee. Influence of Shoe Shape and Gait Characteristics on feet Discomforts according to Women's Foot Type. The Costume Culture Association, 10(3), 306-317. 2001.
  5. S. J. Dixon, A. C. Collop & M. Batt. Surface effects on ground reaction forces and lower extremity kinematics in running. Medicine& Science in Sports & Exercise, 32(11), 1919-1926. 2000. DOI:https://doi.org/10.1.1.463.530/
  6. R. N. Marshall, A. Hreljac & P. A. Hume. Evaluation of lower extremity overuse injury potential in runners. Medicine & Science in Sports & Exercise, 32(9), 1635-1641. 2000.
  7. K. Surmen, F. Ortes & Y. Z. Arslan. Design and Production of Subject Specific Insole Using Reverse Engineering and 3D Printing Technology. International Journal of Engineering Science Invention. 5(12), 2319-6726. 2016.
  8. B. M. Nigg & H. A. Bahlsen. The influence of heel flare and midsole construction on pronation, supination and impact forces for heel-toe running. International Journal of Sport Biomechanics, 4, 205-219. 1988. DOI:https://doi.org/10.1123/ijsb.4.3.205
  9. B. M. Nigg & M. Morlock. The influence of lateral heel flare of runing shoes on pronation and impact forces. Medicine and Science in Sports and Exercise, 19(3), 294-302. 1987.
  10. T. G. McPoil & M. W. Cornwall. Rigid versus soft orthoses, Journal of American Podiatric, Medical Association, 81, 12,638-642. 1991. DOI:https://doi.org/10.7547/87507315-81-12-638
  11. J. Eng & M. R. Pierrynowski. The effect of soft foot orthotics on three-dimensional lower-limb kinematics during walking and running. Physical Theraphy, 74, 9, 836-844. 1994. DOI:https://doi.org/10.1093/ptj/74.9.836
  12. G. F. Kogler, S. E. Solomnidis & J. P. Paul. In vitro method for quantifying the effectiveness of the longitudinal arch support mechanism of the orthoses. Clinical Biomechanics, 10, 5, 245-252. 1995. DOI:https://doi.org/10.1016/0268-0033(95)99802-9
  13. W. C. Hsu, T. Sugiarto, J. W. Chen & Y. J. Lin. The Design and Application of Simplified Insole-Based Prototypes with Plantar Pressure Measurement for Fast Screening of Flat-Foot. Sensors, 18(11), 3617. 2018. DOI:https://doi.org/10.3390/s18113617
  14. R. L. Cromwell, R. A. Newton & G. Forrest. Influence of vision on head stabilization strategies in older adults during walking. Journal of Gerontology, M442-M448. 2002. DOI:https://doi.org/10.1093/gerona/57.7.M442
  15. D. C. Kerrigan, M. K. Todd, U. D. Croce, L. A. Lipsitz & J. J. Collins. Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79, 317-322. 1998. DOI:https://doi.org/10.1016/S0003-9993(98)90013-2
  16. D. J. Stefanyshyn & B. M. Nigg. Energy aspects associated with sport shoes. Sportverletz Sportschaden, 14(3), 82-89. 2000. DOI:https://doi.org/10.1055/s-2000-7867
  17. P. O. Riley, U. DellaCroce & D. C. Kerrigan. Effect of ageon lower extremity joint moment contributions to gait speed. Gait and Posture,14, 264-270. 2001. DOI:https://doi.org/10.1016/S0966-6362(01)00133-3
  18. H. Nagano & R. K. Begg. Shoe-Insole Technology for Injury Prevention in Walking. Sensors, 18(5), 1468. 2018. DOI:https://doi.org/10.103390/s18051468
  19. C. A. McGibbon, D. E. Krebs & M. S. Punello. Mechanical energy analysis identifies compensatory stratagies in disabled elder's gait. Journal of Biomechanics, 34, 481-490. 2001. DOI:https://doi.org/10.1016/S0021-9290(00)00220-7