DOI QR코드

DOI QR Code

Growth Dynamics of the Surfgrass, Phyllospadix Japonicus on the Southeastern Coast of Korea

한반도 동해남부연안에 자생하는 말잘피, 게바다말의 생장 특성

  • 박정임 (해양생태기술연구소) ;
  • 김재훈 (해양생태기술연구소) ;
  • 김종협 (해양생태기술연구소) ;
  • 김명숙 (제주대학교 기초과학연구소.생물학과)
  • Received : 2019.08.20
  • Accepted : 2019.10.15
  • Published : 2019.11.30

Abstract

The surfgrass Phyllospadix japonicus is a dominant seagrass species playing critical ecological roles on the eastern coast of Korea. However, few studies have been conducted on the ecological characteristics of this species, generally due to the turbulent water conditions in its habitat. In this study, to examine the growth dynamics of P. japonicus, we investigated monthly changes in morphological characteristics, density, biomass, and leaf productivity as well as changes in the underwater irradiance, water temperature, and water column nutrient concentrations of its habitat from August 2017 to July 2018. Underwater irradiance and water temperature showed clear seasonal changes increasing in spring and summer and decreasing in fall and winter. Nutrient availability fluctuated substantially, but did not display any distinct seasonal trend. Morphological characteristics, shoot density, biomass, and leaf productivities of P. japonicus exhibited significant seasonal variations, increasing in spring and decreasing in fall months. Spadix of P. japonicus occurred from March to August, with the maximum spadix percentage(15.8%) occurred in May 2018. The average leaf productivity of P. japonicus per shoot and area were 2.1 mg sht-1 d-1 and 7.5 g m-2 d-1, respectively. The optimum water temperature for the growth of P. japonicus in this study was between 13-14℃. The productivity of P. japonicus was not correlated with underwater irradiance, water temperature and nutrient concentrations. These results suggest that the study site provide sufficient amount of underwater irradiance, suitable water temperature range and nutrients for the growth of P. japonicus.

말잘피 게바다말은 우리나라 동해안의 암반조하대에 우점하는 잘피로, 이 곳 연안생태계에서 중요한 기능을 수행한다. 그러나 심한 파도에 노출된 거친 생육 환경으로 인해 지금까지 게바다말의 생태 자료는 미비한 실정이다. 본 조사에서는 동해남부해역에 서식하는 게바다말의 생태적 특성을 알아보기 위해 2017년 8월부터 2018년 7월까지 게바다말 군락지의 환경과 게바다말의 형태적 특성, 밀도, 생체량과 잎 생산성의 변화를 조사하였다. 수중광량과 수온은 봄과 여름에 증가하고 가을과 겨울에 감소하는 뚜렷한 계절 경향을 보였다. 해수의 영양염 농도는 조사 시기마다 유의한 차이를 보였으나, 뚜렷한 계절 변동은 나타나지 않았다. 게바다말의 형태, 밀도, 생체량과 잎 생산성도 가을에 감소하고 봄에 증가하였다. 게바다말의 육수화서는 2월 이후 나타났고, 5월에 최대 비율(15.8%)을 보인 후 8월 이후 탈락되었다. 게바다말의 개체당 및 단위면적당 평균 잎 생산성은 각각 2.1 mg sht-1 d-1과 7.5 g m-2 d-1이었다. 게바다말의 생장이 가장 활발한 수온은 13-14℃로 조사되었다. 게바다말의 잎 생산성은 수중광량, 수온, 영양염 농도와 유의한 상관관계가 나타나지 않았다. 이는 이 지역이 게바다말 생장에 필요한 충분한 빛, 적절한 수온 범위와 영양염 농도를 제공함을 의미한다.

Keywords

References

  1. Dennison, W.C., 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot., 27: 15-26. https://doi.org/10.1016/0304-3770(87)90083-0
  2. Gilbert, S. and K.B. Clark, 1981. Seasonal variation in standing crop of the seagrass Syringodium filliforme and associated macrophytes in the Northern Indian river, Florida, Estuaries, 4: 223-225. https://doi.org/10.2307/1351479
  3. Hasegawa, N., H. Iizumi and H. Mukai, 2005. Nitrogen dynamics of the surfgrass Phyllospadix iwatensis. Mar. Ecol. Prog. Ser., 293: 59-68. https://doi.org/10.3354/meps293059
  4. Kaldy J.E., N. Fowler, and K.H. Dunton, 1999. Critical assessment of Thalassia testudinum aging techniques: implications for demographic inferences. Mar. Ecol. Prog. Ser., 181: 279-288. https://doi.org/10.3354/meps181279
  5. Kim, J.H., J.H. Kim, G.U. Kim and J.-I. Park, 2018. Growth dynamics of the surfgrass, Phyllospadix iwatensis on the eastern coast of Korea. J. Korean Soc. Oceanogr., 23: 192-203.
  6. Kuo, J. and C. den Hartog, 2006. Sseagrass morphology, anatomy, and ultrastructure. In: Seagrasses: Biology, Ecology and Conservation, edited by Larkum, A.W.D., R.J. Orth and C.M. Duarte, Springer, The netherlands, pp. 51-87.
  7. Lee, K.S. and K.H. Dunton, 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser., 196: 39-48. https://doi.org/10.3354/meps196039
  8. Lee, K.-S., S.R. Park and J.B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol., 147: 1091-1108. https://doi.org/10.1007/s00227-005-0011-8
  9. Lee, K-S., J.-I. Park, Y.-K. Kim, S.R. Park and J.-H. Kim, 2007a. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser., 342: 105-115. https://doi.org/10.3354/meps342105
  10. Lee, K.-S., S.R. Park and Y.-K. Kim, 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. & Ecol., 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016
  11. Marba, N., M.A. Hemminga, M.A. Mateo, C.M., Duarte, Y.E.M. Mass, J. Terrados and E. Gacia, 2002. Carbon and nitrogen translocation between seagrass ramets. Mar. Ecol. Prog. Ser., 226: 287-300. https://doi.org/10.3354/meps226287
  12. Park, J.-I., J.-H. Kim and S.-H. Park, 2016. Growth dynamics of the deep-water Asian eelgrass, Zostera asiatica, in the eastern coastal waters of Korea. Ocean Sci. J., 51: 613-625. https://doi.org/10.1007/s12601-016-0052-6
  13. Park, J.-I. and K.-S. Lee, 2009. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar. Biol., 156: 2221-2233. https://doi.org/10.1007/s00227-009-1250-x
  14. Park, J.-I., J.B. Kim and K.-S. Lee, 2017. A comparison of growth patterns between non- indigenous Halophila nipponica and the native sympatric Zostera marina on the southern coast of the Korean peninsula. Mar. Ecol., 38: e12452, DOI: 10.1111/maec.12452.
  15. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York, 173 pp.
  16. Ramirez-García, P., J. Terrados, F. Ramos, A. Lot, D. Ocana and C.M. Duarte, 2002. Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (Mexico). Aquat. Bot., 74: 121-131. https://doi.org/10.1016/S0304-3770(02)00050-5
  17. Ruckelshaus, M.H. and C.G. Hays, 1998. Conservation and management of species in the sea. In: Conservation biology for the coming decade, edited by Fiedler, P.L. and P.M. Karevia, Chapman and Hall, New York, pp. 112-156
  18. Short, F.T., 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot., 27: 41-57. https://doi.org/10.1016/0304-3770(87)90085-4
  19. Short, F.T., D.M. Burdick and J.E. Kaldy, 1995. Mesocosm experiments qualify the effects of nutrification on eelgrass, Zostera marina Limnol. Oceanogr., 40: 740-749. https://doi.org/10.4319/lo.1995.40.4.0740
  20. Short, F.T., T. Carruthers, W. Dennison and M. Waycott, 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol., 350: 3-20. https://doi.org/10.1016/j.jembe.2007.06.012
  21. Smith, W.K., T.C. Vogelmann, E.H. Delucia, D.T. Bell and K.A. Shepherd, 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? BioScience, 47: 785-793. https://doi.org/10.2307/1313100
  22. Terrados, J. and S.L. Williams, 1998. Leaf versus root notrogen uptake by the surfgrass Phyllospadix torreyi. Mar. Ecol. Prog. Ser., 149: 267-277. https://doi.org/10.3354/meps149267
  23. Turner, T., 1983. Complexity of early and middle successional stages in a rocky intertidal surfgrass community. Oecologia, 60: 56-65. https://doi.org/10.1007/BF00379320
  24. Williams, S.L., 1995. Surfgrass (Phyllospadix torreyi) reproduction: reproductive phenology, resource allocation, and male parity. Ecology, 76: 1953-1970. https://doi.org/10.2307/1940726
  25. Yabe, T., I. Ikusima and T. Tsuchiya, 1996. Production and population ecology of Phyllospadix iwatensis Makino. II. Comparative studies on leaf characteristics, foliage structure and biomass change in an intertidal and subtidal zone. Ecol. Res., 11: 291-297. https://doi.org/10.1007/BF02347786