DOI QR코드

DOI QR Code

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis

수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구

  • Shin, Jin Young (Dept. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Hyung-Jin (Dept. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Kyu Hong (Dept. of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2019.07.24
  • Accepted : 2019.10.28
  • Published : 2019.11.01

Abstract

Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.

스파크제트 액츄에이터(Sparkjet Actuator), 혹은 플라즈마 합성 제트 액츄에이터(Plasma Synthetic Jet Actuator)는 능동 유동 제어 장치의 일종으로 신쎄틱 제트와 같은 기존의 능동 유동 제어 장치에 비해 더 강한 제트를 분출할 수 있기 때문에 초음속 유동 제어에 대한 가능성이 높다고 여겨지고 있다. 스파크제트 액츄에이터는 아크 플라즈마를 이용하여 캐비티(Cavity) 내부에 고온, 고압 유동을 발생시키고 이를 오리피스(Orifice) 혹은 노즐 목을 통해 분출시킴으로써 제트를 만들어낸다. 본 연구는 캐비티 내부에 위치한 전극의 위치를 변화시킴으로서 스파크제트 액츄에이터의 추력 및 유동 특성에 생기는 변화를 수치적으로 확인하였다. 전극 위치가 캐비티의 바닥에 가까워질수록 충격량이 증가하였고 캐비티 내부 평균 압력이 높게 유지되었다. 전극 위치가 캐비티 전체 높이의 25% 위치에 있을 때 2.515 μN·s의 충격량이 발생하였고 75% 위치에 있을 때 2.057 μN·s의 충격량이 발생하였다. 전극 위치가 캐비티 전체 높이의 50%에 있을 때보다 충격량이 각각 대략 9.92%와 -10.09% 정도 변화하였다.

Keywords

References

  1. Kim, H. J., Shin, J. Y., Chae, J., Ahn, S., and Kim, K. H., "Research on Flow Analysis Program Development Considering Equilibrium Plasma Flow and Impulse Characterization of Sparkjet Actuator," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 2, 2019, pp. 90-97. https://doi.org/10.5139/JKSAS.2019.47.2.90
  2. Sary, G., Dufour, G., Rogier, F., and Kourtzanidis, K., "Modeling and parametric study of a plasma synthetic jet for flow control," AIAA Journal, Vol. 52, No. 8, 2014, pp. 1591-1603. https://doi.org/10.2514/1.J052521
  3. Laurendeau, F., Chedevergne, F., and Casalis, G., "Transient ejection phase modeling of a plasma synthetic jet actuator," Physics of Fluids, Vol. 26, No. 12, 2014.
  4. Haack, S., Taylor, T., Cybyk, B., Foster, C., and Alvi, F., "Experimental estimation of sparkjet efficiency," 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) 2011, p. 3997.
  5. Belinger, A., Hardy, P., Barricau, P., Cambronne, J. P., and Caruana, D., "Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator," Journal of Physics D: Applied Physics, Vol. 44, No. 36, 2011.
  6. Gordon, S., and McBride, B. J., "Computer program for calculation of complex chemical equilibrium compositions and applications, Part 1: Analysis," 1994.
  7. Haack, S., Taylor, T., Emhoff, J., and Cybyk, B., "Development of an analytical sparkjet model," 5th Flow Control Conference, 2010, p. 4979.
  8. Dufour, G., Hardy, P., Quint, G., and Rogier, F., "Physics and models for plasma synthetic jets," International Journal of Aerodynamics, Vol. 3, No. 1-2-3, 2013, pp. 47-70. https://doi.org/10.1504/IJAD.2013.050922
  9. Zong, H. H., Wu, Y., Jia, M., Song, H. M., Liang, H., Li, Y. H., and Zhang, Z. B., "Influence of geometrical parameters on performance of plasma synthetic jet actuator," Journal of Physics D: Applied Physics, Vol. 49, No. 2, 2015.
  10. Kim, H. J., Chae, J., Ahn, S., and Kim, K. H., "Numerical Analysis on Jet Formation Process of Sparkjet Actuator," 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1552.