
J. lnf. Commun. Converg. Eng. 17(4): 234-238, Dec. 2019 Regular paper

234

Received 30 September 2019, Revised 06 November 2019, Accepted 11 November 2019
*Corresponding Author Moon Hyuk Choi (E-mail: moon1225@koreatech.ac.kr, Tel:+82-41-560-1493)
Department of Computer Engineering, Korea University of Technology and Education, Cheonan 31253, Korea.

https://doi.org/10.6109/jicce.2019.17.4.234 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

Development of Branch Processing System Using WebAssembly
and JavaScript

Moon-Hyuk Choi* and Il-Young Moon , Member, KIICE

Department of Computer Engineering, Korea University of Technology and Education, Cheonan 31253, Korea

Abstract

Existing web applications and services have historically been implemented using JavaScript. However, new technologies such as

artificial intelligence, the Internet of Things, and Big Data are being developed as part of the Fourth Industrial Revolution. With

the definition of the HTML5 web standard, services (such as the technologies mentioned above) that were previously not

available through the Web become available. These services, however, need to have the same performance as native

applications, and implementing these services will require new technologies. Therefore, additional tools that can work on the

Web with native performance are needed. In this paper, a system for branching processing was established using JavaScript and

WebAssembly, a language that can operate on the Web. This system performs user requests in advance, and requests are

branched in a language that produces faster results. Therefore, a service capable of quick response times can be implemented.

Index Terms: Branch system, JavaScript, WebAssembly, Web performance

I. INTRODUCTION

Web applications that dynamically change content have

customarily been implemented in JavaScript, which has his-

torically proven satisfactory for most purposes. Users have

been able to use these applications without issue for a wide

variety of Internet applications. However, with the Fourth

Industrial Revolution, new technologies such as artificial

intelligence (AI), the Internet of Things (IoT), and Big Data,

in addition to Web standards such as HTML5, have arisen.

Various advanced services, such as artificial intelligence and

3D games, are beginning to be offered through the Web.

JavaScript by itself, however, makes it difficult to provide

the aforementioned technologies to users, as they require

performance nearing that of native applications running on

the user’s own computer. To solve this problem, a new lan-

guage or technology, one that can operate on the Web and

provide the necessary performance, is required. Towards this

goal, the new system should be able to compile low-level

code such as C, C++, and RUST. It should also be able to

use WebAssembly to provide high performance over the

Web [1, 2]. However, WebAssembly is not a wholesale

replacement of JavaScript. WebAssembly and JavaScript

should be used together. In this paper, a branching system of

execution faster than existing systems is proposed. The pro-

posed system operates by branching tasks to the faster oper-

ating environment, identified through performance comparisons

of WebAssembly and JavaScript [3, 4].

Most web services are implemented by predefining what

functions are to be provided to users. As user requests for

these services are predefined, expected performance can be

calculated in advance using WebAssembly and JavaScript.

Based on the above results, the user is provided with service

after branching into a runtime corresponding to language

that will provide faster performance. Implementing and

using a corresponding branching system ensures that users

https://orcid.org/0000-0002-5695-3703
https://orcid.org/0000-0002-9012-6285

Development of Branch Processing System Using WebAssembly and JavaScript

235 http://jicce.org

always get a fast response, regardless of the action requested.

A. Javascript and its Limitations

JavaScript is an object-based scripting language used to

implement dynamic behavior on the Web or to process the

domain object model (DOM). JavaScript has remained

widely used in web programming for over twenty years,

because the virtual machines built into most browsers could

only support JavaScript. Thus far, JavaScript has been

largely sufficient in addressing the technical challenges aris-

ing from developing for the Web, and in implementing appli-

cation functionality without the help of other languages.

JavaScript continues to evolve through multiple iterations,

such as ECMAScript 6 and 7. As of this writing, the current

version is being updated with the latest changes, and its suc-

cessor is to be named ECMAScript 2020. These develop-

ments continue to facilitate implementation on the Web, as

JavaScript adds features or functions that can implement

new actions whenever a new version is released.

However, even though JavaScript has continued to advance

technologically, issues have arisen in terms of speed and per-

formance for delivering the latest technology to users on the

web. While there is no problem with the implementation and

operation of existing applications in JavaScript, technologies

such as AI, the IoT, Big Data, 3D games, AR/ VR, and video

processing are starting to be offered through the web. It is

difficult to implement applications operating at close to

native performance on the Web through JavaScript alone.

Therefore, the time has come for other languages to operate

on the Web, such as WebAssembly. However, there is cur-

rently no language available that can fully replace JavaScript

for web services implementation. To solve the above prob-

lems, an additional WebAssembly system that can provide

near native performance and operate on the web is desirable.

B. WebAssembly

WebAssembly is a language that compiles and delivers

code written in low-level languages, such as C, C++, and

RUST, as modules that can run on the latest web browsers

[5]. The biggest difference between WebAssembly and exist-

ing JavaScript implementations is that execution on the Web

in WebAssembly can be significantly faster, permitting per-

formance close to that of native applications, because Web-

Assembly compiles and executes low-level language code.

Therefore, the challenge of JavaScript performance limita-

tions can be solved using WebAssembly. In addition, Web-

Assembly not only provides a performance benefit on the

web, but is highly portable. It works on a variety of plat-

forms, as well as on the Web, by operating the features pro-

vided by hardware [6, 7].

However, even if a WebAssembly implementation can

operate on the Web and on various other platforms, it cannot

entirely replace JavaScript [8, 9]. For instance, WebAssem-

bly does not have the ability to access the DOM. Therefore,

JavaScript and WebAssembly should be used together to

realize the advantages of both. JavaScript does not require

compilation because it is a high-level language utilizing

dynamic types for implementing web applications. WebAs-

sembly offers fast speeds in a low-level language within a

compact binary format. JavaScript and WebAssembly can

and should be used simultaneously to synergistically benefit

from each other, and thus implement faster and better per-

forming Web services.

II. SYSTEM MODEL AND METHODS

WebAssembly, due to compilation and execution of lower

level language code, is faster than JavaScript, and runs at

near native execution speed. However, WebAssembly is not

necessarily faster than JavaScript for every operation. There-

fore, in this section a system is proposed and outlined that

can compare JavaScript and WebAssembly performance.

Based on this comparison, the system branches into the

faster execution environment.

The speed comparison experiment was conducted for three

different computations. The first experiment examined matrix

multiplication, which is widely used in numerous fields.

Because it is also used on the Web for DOM access with

JavaScript and CSS styling [10], matrix multiplication makes

a suitable test of the new system. The other two experiments

examined the factorial and Fibonacci sequences. In these

cases, algorithm time-complexity was also frequently used as

an example and added as a corresponding experimental ele-

ment. These three operations are considered representative.

Speed comparisons can be performed with other types of

operations, but this is not considered critical, because most

web services are implemented through a predefined set of

functions provided to users. Therefore, it is typically possi-

ble to determine the provided services in advance, and to

confirm that they will run at improved speed using the

branch system.

Matrix multiplication, factorial sequences, and Fibonacci

sequences were implemented in C for operation in WebAs-

sembly. Using emscripten, the code implemented in C was

converted to a JavaScript module. The module was imported

from JavaScript and used [11-13]. After being run in JavaS-

cript, functions were exported, and the module was imported

as with WebAssembly, to compare JavaScript and WebAs-

sembly speed within the same page. The operand of each

operation was randomized for each trial, to minimize bias in

the speed measurements.

J. lnf. Commun. Converg. Eng. 17(4): 234-238, Dec. 2019

https://doi.org/10.6109/jicce.2019.17.4.234 236

III. RESULTS

The computer specifications for comparing JavaScript and

WebAssembly speed are listed in Table 1.

The code described in Tables 2-7 was implemented with

JavaScript and WebAssembly. Only the key logic sections,

not the entirety of the code, are inserted in the tables below.

The code tables are listed in the following order: matrix mul-

tiplication, factorial sequence, and Fibonacci sequence.

The JavaScript code for implementing matrix multiplica-

tion, factorial series, and the Fibonacci sequence, are shown

in Tables 2, 3, and 4, respectively.

The WebAssembly code was implemented in C and con-

verted to JavaScript using emscripten. Therefore, C code

was inserted, because the converted JavaScript code was

excessively long.

The code for implementing matrix multiplication, factorial

series, and the Fibonacci sequence with WebAssembly are

listed in Tables 5, 6, and 7, respectively. Below is a brief

description of the code:

In the matrix multiplication code (Tables 2 and 5), the N =

100,000, and ROW = COL = 3. The code multiplies 3 by 3

matrices. Individual matrix elements are no more than five

digits long. After running for 100,000 iterations, the code

returns the execution time.

In the factorial code (Tables 3 and 6), N = 10,000. The

code executes 10000!, and iterates 10,000 times. Afterwards,

the code returns the execution time.

In the Fibonacci code (Tables 4 and 7), N = 45. The code

calculates the 45th Fibonacci number. After doing this, the

Table 4. Fibonacci sequence using JavaScript

const fibo = num => {

 if (num === 0) return 0;

 else if (num === 1) return 1;

 else return fibo(num - 1) + fibo(num - 2);

 };

Table 5. Matrix multiplication using WebAssembly

for(count = 0 ; count < N ; count++) {

 for(i = 0 ; i < ROWS ; i++) {

 for(j = 0 ; j < COLS ; j++) {

 arr1[i][j] = rand() % N;

 arr2[i][j] = rand() % N;

 }

 }

 for(i = 0 ; i < COLS ; i++){

 for(j = 0 ; j < ROWS ; j++) {

 result[j][i] = 0;

 for(k = 0 ; k < ROWS ; k++) {

 result[j][i] += arr1[j][i] * arr2[j][i];

 }

 }

 }

 }

Table 6. Factorial using WebAssembly

int factorial(int num) {

 if(num == 0) return 1;

 return num * factorial(num - 1);

}

int main(void) {

 for(i = 0 ; i < N ; i++) {

 factorial(N);

 }

 return 0;

}

Table 7. Fibonacci sequence using WebAssembly

int fibo(int num) {

 if (num == 0) return 0;

 else if (num == 1) return 1;

 else return fibo(num - 1) + fibo(num - 2);

}

int main(void) {

 fibo(N);

 return 0;

}

Table 1. Experimental computer specification

Category Information

Processor Inter(R) Core(TM) i5-7200U CPU @ 2.50 GHz 2.7 GHz

Ram 8.00 GB

OS Windows 10 Pro

Table 2. Matrix multiplication using JavaScript

for (let count = 0; count < N; count++) {

 for (let i = 0; i < ROWS; i++) {

 let temp1 = [];

 let temp2 = [];

 for (let j = 0; j < COLS; j++) {

 temp1.push(Math.random() * N);

 temp2.push(Math.random() * N);

 }

 arr1.push(temp1);

 arr2.push(temp2);

 }

}

Table 3. Factorial using JavaScript

const factorial = num => {

 if (num === 0) return 1;

 return num * factorial(num - 1);

 };

 const N = 10000;

 let start = new Date().getTime();

 for (let count = 0; count < N; count++) {

 factorial(N);

 }

Development of Branch Processing System Using WebAssembly and JavaScript

237 http://jicce.org

code returns the execution time.

Information is tabulated in Table 8 to facilitate comparison

of JavaScript and WebAssembly speed. The experiment was

carried out 15 times and the units of results produced were

in seconds. The comparison results of JavaScript and Web-

Assembly computation speed for matrix multiplication, fac-

torial computation, and Fibonacci number computation are

listed in Table 8.

It can be confirmed that not all actions in WebAssembly

are faster than in JavaScript. It can be seen that the WebAs-

sembly was faster for matrix multiplication and factorial

computation, but that JavaScript was faster for Fibonacci

sequences.

Based on the results of the experiment, speeds obtained in

each environment alone were compared to speeds obtained

by branching out the three operations to the faster perform-

ing language in each case. For matrix multiplication and fac-

torial computations, WebAssembly performed the execution;

JavaScript performed the Fibonacci sequence execution.

The speed comparison between the branch system, the

JavaScript-alone system, and the WebAssembly-alone sys-

tem is listed in Table 9. The JavaScript and WebAssembly

results are the sum of the mean values of the previous exper-

iment. The results show that the branching process is faster

by approximately four seconds. Based on the experiment, it

can be confirmed that the branching system is fastest for

completion of a mix of tasks. Thus, applying the branching

system to actual Web services execution can enable users to

receive service in the fastest way possible, by having any

request serviced by the implemented branching processing

system.

IV. DISCUSSION AND CONCLUSIONS

JavaScript alone has been sufficient for the implementa-

tion of existing applications and web services. However, the

Fourth Industrial Revolution and development of the Web

mean that applications, services, and technologies that were

previously not available on the Web are now being provided.

Implementing these through JavaScript alone is difficult

because of a requirement of near-native execution speed.

Another technology is needed to achieve this. Solutions

implemented by compiling and using low-level languages

using WebAssembly can operate on the Web at the desired

speed.

A system was built to branch execution to the fastest run-

time environment available, based on user response time to

requests from JavaScript, by comparing JavaScript and Web-

Assembly execution speed in advance. With this system in

place, users obtain the quickest response after submitting the

request. In the experiments discussed in this paper, for exam-

ple, it took 20.071737 s to perform a certain series of opera-

tions with JavaScript alone, and 20.613797 s to perform the

operation with WebAssembly alone. However, the branching

system, by choosing the runtime corresponding to the pro-

gramming language with faster execution, resulted in a time

of 16.563 s, reducing response time by approximately 3.5 s.

This is approximately 1.212 times faster than using JavaS-

cript alone, and 1.245 times faster than using only WebAs-

sembly.

In this experiment, a simple mathematical operation was

used for testing. If actual performance times are very long,

the difference would be magnified, on the order of minutes

and hours, not seconds. Thus, a branching system built by

comparing JavaScript and WebAssembly performance rates

can fulfill users’ requests significantly more quickly. As a

result, users can receive the fastest responses possible to

requests, get better service than provided for by existing ser-

vices, and experience web services in a more user-friendly

manner.

ACKNOWLEDGEMENTS

This research was supported by the Basic Science

Research Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education (No.

2018R1D1A3B07049722).

REFERENCES

[1] InfoWorld, WebAssembly is now ready for browsers to use [Internet],

Available: https://www.infoworld.com/article/3176681/webassembly-

is-now-ready-for-browsers-to-use.html.

[2] MDN web docs, WebAssembly Concepts [Internet], Available:

https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts.

[3] WEBASSEMBLY, [Internet], https://webassembly.org/.

[4] M. Reiser, and L. Blaser, “Accelerate JavaScript applications by

cross-compiling to WebAssembly,” in Proceeding of Conference:

the 9th ACM SIGPLAN International Workshop, Vancouver, pp. 10-

17, 2017. DOI: 10.1145/3141871.3141873.

Table 8. Operation speed comparison

- JavaScript (Sec) WebAssembly (Sec)

Matrix multiplication 0.2444 0.0262

Factorial computation 3.734067 0.689067

Fibonacci computation 16.09327 19.89853

Table 9. Branch processing speed comparison

Category Speed (Sec)

Branch Processing 16.563

JavaScript 20.071737

WebAssembly 20.613797

J. lnf. Commun. Converg. Eng. 17(4): 234-238, Dec. 2019

https://doi.org/10.6109/jicce.2019.17.4.234 238

[5] Google Developers, Loading WebAssembly modules efficiently

[Internet], Available: https://developers.google.com/web/updates/2018

/04/loading-wasm.

[6] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D.

Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up

to speed with WebAssembly,” in Proceeding of the 38th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, New York: NY, pp. 185-200, 2017. DOI: 10.1145/

3062341.3062363.

[7] L. Stephane, O. Yann and D. Fober, “Compiling faust audio DSP code

to WebAssembly,” in Proceeding of 3rd Web Audio Conference,

London: UK, 2017.

[8] D. Herrera, H. Chen, and E. Lavoie, “WebAssembly and JavaScript

Challenge : Numerical program performance using modern browser

technologies and devices,” University of McGill, Montreal:QC,

Technical report SABLE-TR-2018-2, 2018.

[9] WEBASSEMBLY, Portability [Internet], Available: https://webassembly.

org/docs/portability/#asumptions-for-efficient-execution.

[10] MDN web docs, Matrix math for the web [Internet], Available: https:

//developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Matrix_

math_for_the_web.

[11] Google Developers, Emscripting a C library to Wasm [Internet],

Available: https://developers.google.com/web/updates/2018/03/

emscripting-a-c-library.

[12] A. Zakai, “Emscripten: An LLVM-to-JavaScript compiler” in Proceeding

of Conference: Companion to the 26th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Portland, pp. 301-

312, 2011. DOI: 10.1145/2048147.2048224.

[13] A. Zakai, “Fast physics on the web using C++, JavaScript, and

emscripten” Computing in Science & Engineering, vol. 20, no. 1, pp.

11-19, 2018. DOI: 10.1109/MCSE.2018.110150345.

Moon Hyuk Choi
attends the Department of Computer Engineering at Korea University of Technology and Education. His research interests

include the Internet, web standards, and web assembly.

Il Young Moon
received a B.S degree from the Department of Aeronautics and Telecommunications Information Engineering from Korea

Aerospace University in 2000, an M.S. degree from the same department of Korea Aerospace University in 2002, and a

Ph.D., also from the same department and university, in 2005. His research interests include wireless internet applications,

wireless Internet, and mobile IP.

