DOI QR코드

DOI QR Code

폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder

  • Jung, Yeon Jae (Korea Institute of Industrial Technology) ;
  • Son, Seong Ho (Korea Institute of Industrial Technology) ;
  • Park, Sung Cheol (Korea Institute of Industrial Technology) ;
  • Kim, Yong Hwan (Korea Institute of Industrial Technology) ;
  • Yoo, Bong Young (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 투고 : 2019.11.01
  • 심사 : 2019.11.25
  • 발행 : 2019.12.31

초록

최근, 전기차 증가에 따른 리튬 전지의 사용량 증가로 리튬 가격 증가 및 폐리튬전지 발생량이 증가하고 있다. 이러한 이유로 폐리튬전지 내 리튬 회수에 대한 연구가 진행되고있다. 본 연구에서는 폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬 침출에 관한 연구를 진행하였다. 셀 분말(LiNixCoyMnzO2, LiCoO2)로부터 선택적 리튬 침출을 위해서는 환원을 통한 상변화 및 분리가 필요하다. 폐전기차 셀분말 내 탄소는 고온에서 산소와 반응하여 환원제 역할을 한다. 적정 온도를 알고자 대기/질소 분위기에서 TG-DSC 분석 및 550 ~ 850 ℃ 열처리 후, XRD 분석을 하였다. 열처리 된 분말은 ICP 분석을 위해 D.I water에서 1:10 비율로 침출 후 분석하였다. XRD 분석결과, 700 ℃에서 Li2CO3 피크가 확인되었다. 850 ℃ 열처리 시 Li2O의 피크가 확인되었는데, 이는 Li2CO3가 723 ℃ 이상의 온도에서 Li2O와 CO2로 분해되었기 때문이다. 또한 Li2O와 Al2O3와 반응으로 LiAlO2가 확인되었다. 850 ℃에서 열처리 시 Li 침출율이 낮아졌는데 이는 LiAlO2가 D.I water에서 침출하지 않기 때문으로 판단된다. 리튬 침출율의 경우 열처리의 조건에 따라 달라지며, 질소 분위기 중 700 ℃로 열처리 시 약 45 %의 리튬침출이 확인되었다. 침출 용액을 고-액분리 후증발농축하여 XRD 분석을 실시한 결과, Li2CO3의 피크를 확인하였다.

Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

키워드

참고문헌

  1. Martin, Rentsch and Gunther 2017 : Lithium market research-global supply, future demand and price development, Energy Storage Materials, (6), pp.171-179.
  2. Bunsen, T., Cazzola, Gorner, et al., 2018 : Global EV Outlook 2018: Towards cross-modal electrification., International Energy Agency.
  3. Kim, Yanghwa, et al., 2019 : Electric Vehicle Market and Battery Related Technology Research Trends, Transactions of the Korean hydrogen and new energy society, 30(4), pp.362-368. https://doi.org/10.7316/KHNES.2019.30.4.362
  4. Zhang, Xihua, et al., 2013 : An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries, Journal of Material Cycles and Waste Management, 15(4), pp.420-430. https://doi.org/10.1007/s10163-013-0140-y
  5. Paulino, et al., 2008 : Recovery of valuable elements from spent Li-batteries, Journal of Hazardous Materials, 150(3), pp.843-849. https://doi.org/10.1016/j.jhazmat.2007.10.048
  6. Miller, James F., and Urs Muntwyler, 2016 : International Cooperation on Public Policies and Strategies for Hybrid & Electric Vehicles under the International Energy Agency, World Electric Vehicle Journal, 8(4), pp.842-845. https://doi.org/10.3390/wevj8040842
  7. Ballon and Massie Santos, 2010 : Electrovaya, Tata Motors to make electric Indica, cleantech.com. Cleantech Group. Retrieved, 11.
  8. Meshram, Pratima, B. D. Pandey, and T. R. Mankhand, 2014 : Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150, pp.192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
  9. Lee, Churl Kyoung, and Kang-In Rhee, 2002 : Preparation of $LiCoO_2$ from spent lithium-ion batteries, Journal of Power Sources, 109(1), pp.17-21. https://doi.org/10.1016/S0378-7753(02)00037-X

피인용 문헌

  1. Study on Roasting for Selective Lithium Leaching of Cathode Active Materials from Spent Lithium-Ion Batteries vol.11, pp.9, 2021, https://doi.org/10.3390/met11091336