References
- Y. M. Mohan, Y. Mani, and K. M. Raju, Synthesis of azido polymers as potential energetic propellant binders, Des. Monomers, 9, 201-236 (2006). https://doi.org/10.1163/156855506777351045
- C. J. Tang, Y. J. Lee, and T. A. Litzinger, Simultaneous temperature and species measurements of the glycidyl azide polymer (GAP) propellant during laser-induced decomposition, Combust. Flame, 117, 244-256 (1999). https://doi.org/10.1016/S0010-2180(98)00112-6
- N. Kubota and T. Sonobe, Combustion mechanism of azide polymer, Propellants, Explosives, Pyrotechnics, 13, 172-177 (1988). https://doi.org/10.1002/prep.19880130604
- M. Judge, C. Badeen, and D. Jones, An advanced GAP/AN/TAGN propellant. Part II: Stability and storage life, Propellants, Explosives, Pyrotechnics, 32, 227-234 (2007). https://doi.org/10.1002/prep.200700024
- M. B. Frankel, L. R. Grant, and J. E. Flanagen, Historical development of glycidyl azide polymer, J. Propulsion Power., 8, 560-563 (1992). https://doi.org/10.2514/3.23514
- M. D. Shi, Research progress of GAP and GAP propellant, Chinese Journal of Explosives and Propellants, 1, 9-16 (1994).
- J. F. Guery, I. S. Chang, T. Shimada, M. Glick, D. Boury, E. Robert, J. Napior, R. Wardle, C. Perut, M. Calabro, R. Glick, H. Habu, N. Sekino, G. Vigier, and B. d'Andrea, Solid propulsion for space applications: An updated roadmap, Acta Astronaut., 66, 201-219 (2010). https://doi.org/10.1016/j.actaastro.2009.05.028
- R. R. Sanghavi, S. N. Asthana, and J. S. Karir, Haridwar singh, studies on thermoplastic elastomers based RDX-Propellant compositions, J. Energy Mater., 19, 79-95 (2001). https://doi.org/10.1080/07370650108219393
-
E. Diaz, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and Alex
$^{(R)}$ . Propellants, Explosives, Pyrotechnics, 28(4), 210-215 (2013) https://doi.org/10.1002/prep.200300007 - G. Ampleman, P. Brousseau, S. Thiboustot, C. Dubois, and E. Diaz, Insensitive melt- cast plastic- bonded explosives containing energetic polyurethane thermoplastic elastomer binders, US 2002/0003016 A1 (2002).
- G. Ampleman, A. Marois, and S. Desilets, Azido thermoplastic elastomers for propellants, US Patent 6,479,614 (2002).
- E. Ahad, Azido thermoplastic elastomers, US Patent 5,223,056 (1993).
- C. Hepburn, Polyurethane Elastomers, 2nd ed., Elsevier Applied Science, London (1992).
- G. Oertel, Polyurethane Handbook, 2nd ed., Hanser, Munich (1994).
- S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
- G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2nd ed., Hanser Gargner Publication (1996).
- C. Hepburn, Polyurethane Elastomers, Elsevier Science, New York (1992).
- (a) Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, and B. Chu, Multiphase structure of a segmented polyurethane: Effects of temperature and annealing, Macromolecules, 25, 7365-7372 (1992) https://doi.org/10.1021/ma00052a045
- (b) S. Abouzahr and G. L. Wilkes, Structure property studies of polyester- and polyether- based MDI- BD segmented polyurethanes: effect of one- vs. two- stage polymerization conditions, J. Appl. Polym. Sci., 29, 2695-2711 (1984) https://doi.org/10.1002/app.1984.070290902
- (c) C. E. Wilkes and C. S. Yusek, Investigation of domain structure in urethane elastomers by X-ray and thermal methods, J. Macromol. Sci. B, 7, 157-175 (1973) https://doi.org/10.1080/00222347308212578
- (d) R. Bonart and E. H. Muller, Phase separation in urethane elastomers as judged by low-angle X-ray scattering. I. Fundamentals, J. Macromol. Sci. B, 10, 177-189 (1974) https://doi.org/10.1080/00222347408219403
- (e) T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Differential scanning calorimetry analysis of morphological changes in segmented elastomers, Polym. Eng. Sci., 20, 190-197 (1980) https://doi.org/10.1002/pen.760200304
- (f) V. A. Vilensky and Y. S. Lipatov, A criterion for microphase separation in segmented polyurethane and polyurethane ureas, Polymer, 35, 3069-3074 (1994) https://doi.org/10.1016/0032-3861(94)90421-9
- (g) J. T. Koberstein and T. P. Russell, Simultaneous SAXS- DSC study of multiple endothermic behavior in polyether-based polyurethane block copolymers, Macromolecules, 19, 714-720 (1986) https://doi.org/10.1021/ma00157a039
- (h) C. S. Paik Sung, C. B. Hu, and C. S. Wu, Properties of segmented poly(urethaneureas) based on 2,4-toluene diisocyanate. 1. Thermal transitions, X-ray studies, and comparison with segmented poly(urethanes), Macromolecules, 13, 111-116 (1980) https://doi.org/10.1021/ma60073a022
- (i) R. W. Seymour and S. L. Cooper, DSC studies of polyurethane block polymers, J. Polym. Sci. B, 9, 689-694 (1971) https://doi.org/10.1002/pol.1971.110090911
- (j) J. S. You, J. O. Kweon, S. C. Kang, and S.-T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010) https://doi.org/10.1007/s13233-010-1215-4
- (k) P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011). https://doi.org/10.1007/s00289-010-0352-4
- J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18(12), 1226-1232 (2010). https://doi.org/10.1007/s13233-010-1215-4
- P. Liu, L. Ye, Y. Liu, and F. Nie, Preparation and properties of the main-chain-fluorinated thermoplastic polyurethane elastomer, Polym. Bull., 66(4), 503-515 (2011). https://doi.org/10.1007/s00289-010-0352-4
- R. P. Kusy and D. T. Turner, Radiation chemistry of polymers studied by depression of melting temperature, Macromolecules, 4(3), 337-341 (1971). https://doi.org/10.1021/ma60021a017
- L. Ning, W. De-Ning, and Y. Sheng-Kang, Crystallinity and hydrogen bonding of hard segments in segmented poly (urethane urea) copolymers, Polymer, 37(16), 3577-3583 (1996). https://doi.org/10.1016/0032-3861(96)00166-8
- C. Zhang, Z. Ren, Z. Yin, H. Qian, and D. Ma, Amide II and amide III bands in polyurethane model soft and hard segments, Polym. Bull., 60, 97-101 (2008). https://doi.org/10.1007/s00289-007-0837-y
- J. Mattia and P. Painter, A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly (ethylene glycol), Macromolecules, 40(5), 1546-1554 (2007). https://doi.org/10.1021/ma0626362
- Y. I. Tien and K. H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer, 42(7), 3213-3221 (2001). https://doi.org/10.1016/S0032-3861(00)00729-1
- J. T. Koberstein, A. F. Galambos, and L. M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties, Macromolecules, 25, 6195-6204 (1992). https://doi.org/10.1021/ma00049a017
- Webster D, The effect of soft segments on the morphology of polyurethane elastomers, In: Frisch KC Klempner D (ed) Advances in Urethane Science and Technology, 110-136 Technomic, Lancaster (1992).
- G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996).
- S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim (2005).
- J. Xiao, H. X. Xiao, K. C. Frisch, and N. Malwitz, Polyurethane-urea anionomer dispersions. I, J. Appl. Polym. Sci., 54, 1643-1650 (1994). https://doi.org/10.1002/app.1994.070541107