DOI QR코드

DOI QR Code

Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation

양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2019.10.02
  • Accepted : 2019.10.29
  • Published : 2019.12.10

Abstract

As the hydrogen fuel cell market is expanded starting from hydrogen electric vehicle and power generation field, the demand for fuel cells and hydrogen increases recently. Therefore, research works on fuel cell durability and fuel efficiency are required in order to activate the fuel cell market and commercialization. A dead-ended anode system was used in this study to optimize the fuel cell performance and fuel efficiency. The effect of purge condition according to the applied current and hydrogen supply pressure on the fuel cell performance were evaluated. In addition, the influence of water back diffusion on the different electrolyte membrane thickness was analyzed. The accumulated water was purged with a solenoid valve in the case of 3% voltage decrease in the dead-ended anode system. The experiment was performed with the hydrogen supply pressure of 0.1~0.5 bar and purge duration of 0.1~1 second. A maximum fuel efficiency of 98.9% was achieved under the purge duration of 0.1 s and hydrogen supply pressure of 0.1 bar with a NR 211 (25.4 um) membrane. However, the fuel cell performance decreased in a long-term operation due to some frequent flooding. The fuel efficiency and purge interval increased due to decreased back diffusion rates of the water and nitrogen with a NR 212 (50.8 um) membrane.

수소전기차와 발전을 시작으로 수소연료전지 시장이 성장하면서 연료전지와 수소의 수요가 증가하고 있으므로, 조기 상용화와 시장 활성화를 위하여 연료전지의 내구성과 연료 이용효율에 관한 연구가 진행되어야 한다. 본 연구에서는 연료전지의 성능과 연료 이용효율을 최적화하기 위하여 양극 닫힌계의 운전조건에 대한 연구를 수행하였다. 부하 전류에 대한 배출 조건과 수소 공급 압력이 고분자전해질 연료전지의 성능에 미치는 영향에 대하여 평가하였고, 전해질막 두께에 대한 물의 역확산 영향을 분석하였다. 양극 닫힌계에서 수소극에 쌓인 물은 연료전지 전압이 3% 감소한 경우에 솔레노이드 밸브를 열어 배출하였다. 수소 공급 압력은 0.1~0.5 bar, 배출 시간은 0.1~1 s까지 변화시키면서 실험을 수행하였다. NR 211 (25.4 um) 전해질막의 경우 0.1 bar의 수소 공급 압력과 0.1 s 배출 시간 조건에서 수소 이용효율 98.9%의 가장 높은 연료 이용효율을 보였지만 잦은 flooding으로 인하여 장시간 운전 시 연료전지의 성능이 감소하였다. 이에 반해 NR 212 (50.8 um)의 전해질막에서 생성된 물과 질소의 역확산 속도를 늦추어 배출 간격을 늘리고 연료 이용효율을 높일 수 있었다.

Keywords

References

  1. Y. Y. Wang, K. S. Chen, J. Misshler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  2. O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev., 32, 810-853 (2014). https://doi.org/10.1016/j.rser.2014.01.012
  3. T. Wilberforce, A. Aswad, A. Palumbo, M. Dassisti, and A. G. Olabi, Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy, 41, 16509-16522 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.057
  4. L. Xiong and A. Manthiram, High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cell, Electrochim. Acta., 50, 3200-3204 (2005). https://doi.org/10.1016/j.electacta.2004.11.049
  5. T. Kitahara, T. Konomi, and H. Nakajima, Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells, J. Power Sources, 195, 2202-2211 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.089
  6. Y. Lee, B. Kim, and Y. Kim, An experimental study on water transport through the membrane of a PEFC operating in the dead-end mode, Int. J. Hydrogen Energy, 34, 7768-7779 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.010
  7. J. W. Choi, Y. S. Hwang, S. W. Cha, and M. S. Kim, Experimental study on enhancing the fuel efficiency of an anodic dead-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen, Int. J. Hydrogen Energy, 35, 12469-12479 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.076
  8. J. C. Kurnia, A. P. Sasmito, and T. Shamim, Advances in proton exchange membrane fuel cell with dead-end anode operation: A review, Appl. Energy, 252, 413-416 (2019).
  9. J. B. Siegel, D. A. Mckay, A. G. Stefanopoulou, D. S. Hussey, and D. L. Jacobson, Measurement of liquid water accumulation in a PEMFC with dead-ended anode, J. Electrochem. Soc., 155, B1168-B1178 (2008). https://doi.org/10.1149/1.2976356
  10. S. Chevalier, N. Ge, J. Lee, P. Antonacci, R. Yip, M. G. George, H. Liu, R. Banerjee, M. Fazeli, and A. Bazylak, In situ analysis of voltage degradation in a polymer electrolyte membrane fuel cell with a dead-ended anode, Electrochem. Commun., 59, 16-19 (2015). https://doi.org/10.1016/j.elecom.2015.06.009
  11. J. Yu, Z. Jiang, M. Hou, D. Liang, Y. Xiao, M. Dou, Z. Shao, and B. Yi, Analysis of the behavior and degradation in proton exchange membrane fuel cells with a dead-ended anode, J. Power Sources, 246, 90-94 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.163
  12. C. Y. Hung, H. S. Huang, S. W. Tsai, and Y. S. Chen, A purge strategy for proton exchange membrane fuel cells under varying-load operations, Int. J. Hydrogen Energy, 41, 12369-12376 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.132
  13. Y. Yang, X. Zhang, L. Guo, and H. Liu, Overall and local effects of operating conditions in PEM fuel cells with dead-ended anode, Int. J. Hydrogen Energy, 42, 4690-4698 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.091
  14. S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, and O. Lottin, High potential excursions during PEM fuel cell operation with dead-ended anode, J. Electrochem. Soc., 162, F1212-F1220 (2015). https://doi.org/10.1149/2.0511510jes
  15. B. Chen, J. Wang, T. Yang, Y. Cai, C. Zhang, S. H. Chan, Y. Yu, and Z. Tu, Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode, Energy, 106, 54-62 (2016). https://doi.org/10.1016/j.energy.2016.03.045
  16. B. Chen, Y. Cai, J. Shen, Z. Tu, and S. H. Chan, Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode, Appl. Therm. Eng., 132, 80-86 (2018). https://doi.org/10.1016/j.applthermaleng.2017.12.078
  17. Y. F. Lin and Y. S. Chen, Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode, J. Power Sources, 340, 176-182 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.039
  18. K. Lee and J. Kim, Performance enhancement and recovery method of open cathode PEMFC, Appl. Chem. Eng., 28. 118-124 (2017). https://doi.org/10.14478/ace.2016.1126
  19. Q. Jian, L. Luo, B. Huang, J. Zhao, S. Cao, and Z. Huang, Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode, Appl. Therm. Eng., 142, 203-214 (2018). https://doi.org/10.1016/j.applthermaleng.2018.07.001
  20. B. Chen, Z. Tu, and S. H. Chan, Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode, Appl. Therm. Eng., 129, 968-978 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.102
  21. M. M. Taghiabadi and M. Zhiani, Degradation analysis of dead-ended anode PEM fuel cell at the low and high thermal and pressure conditions, Int. J. Hydrogen Energy, 44, 4985-4995 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.040
  22. Y. Yang, X. Zhang, L. Guo, and H. Liu, Different flow fields, operation modes and designs for proton exchange membrane fuel cells with dead-ended anode. Int. J. Hydrogen Energy, 43, 1769-1780 (2018). https://doi.org/10.1016/j.ijhydene.2017.10.137