DOI QR코드

DOI QR Code

인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향

Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System

  • 허정욱 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박경훈 (농촌진흥청 감사담당관실) ;
  • 홍승길 (농촌진흥청 기술협력국) ;
  • 이재수 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 백정현 (농촌진흥청 국립농업과학원 농업공학부)
  • Heo, Jeong-Wook (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development of Administration) ;
  • Park, Kyeong-Hun (Audit and Inspection Office, Rural Development of Administration) ;
  • Hong, Seung-Gil (Korea Program on International Agriculture, Rural Development of Administration) ;
  • Lee, Jae-Su (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development of Administration) ;
  • Baek, Jeong-Hyun (Department of Agricultural Engineering, National Academy of Agricultural Science, Rural Development of Administration)
  • 투고 : 2019.10.08
  • 심사 : 2019.10.25
  • 발행 : 2019.12.31

초록

인공광 식물공장에서는 작물을 생산하기 위하여 일반적으로 화학비료 유래 무기성분을 포함하는 배양액을 시용하여 수경재배한다. 본 연구에서는 광질이 상이한 식물공장에서 관행의 무기배양액 일부 또는 전량을 유기배양액으로 대체할 수 있는 폐기 농업부산물 유래 유기배양액을 시용하여 수경재배하고 작물의 생장에 미치는 영향을 검토하였다. 청색, 적색 및 백색 LED를 1:2:1의 비율로 혼합한 혼합LED 및 관행의 형광등 조사 조건에서 적치마와 청치마 상추 실생묘를 35일간 수경재배한 결과, 적치마와 청치마 상추의 생체중 및 전개엽수 증가는 형광등을 조사한 Y구에서 통계적으로 유의하게 증가하였다. 그러나 유·무기 혼합배양액 처리구인 YK 및 YTJ에서는 오히려 혼합LED 조사구에서 증가하였다. 유기배양액 단용 또는 유·무기 혼합배양액 처리시 엽내 SPAD치는 두 실생묘 모두 Y구와 유사하거나 증가하는 경향을 나타내었다. 관행의 무기배양액인 Y구에서 배양액내 구성성분 중 가장 많은 양을 차지하고 있는 무기성분인 NO3-N은 재배 개시일에 약 97 mg/L으로, 적치마와 청치마 상추 실생묘에서 모두 재배기간이 경과함에 따라 감소하는 경향을 보였다. 적치마의 경우 재배종료시 각 처리구별 NO3-N 농도는 형광등 조사시 약 29 mg/L, 혼합LED 조사시 24 mg/L였으며, 청치마의 경우 형광등 조사시 약 26 mg/L, 혼합LED 조사시 47 mg/L로, 초기 투입량 대비 25~48% 정도의 양이 재배종료시까지 흡수되지 않고 남아 있었다. 재배개시일 NH3-N 농도는 Y구3-N 잔여량은 약 13%로 최대값을 나타내었다. 관행의 무기배양액내 질산태질소는 작물체에 흡수되어 생체중, 엽수 증가와 같은 지상부 생장을 좌우하는 주요 성분이지만 재배종료시까지 전량이 흡수되지 않고 남아 있는 것으로 보아 상추 수경재배시 배양액내 질산태질소의 초기 투입량을 조절할 필요성이 대두되었다. 연구결과 농업부산물 유래 유기배양액을 활용하여 적치마와 청치마 상추를 수경재배할 경우 유기배양액 단용보다 유·무기 혼합배양액 시용으로 유기배양액내 부족한 질소 성분을 무기질소로 보충할 수 있어 무기성분 사용량 저감이 기대된다. 또한 상추 실생묘의 양적생장 추이와 달리 엽내 색소합성이 관행 무기배양액보다 특정 유기배양액 단용 또는 혼용에 의해 유의하게 증가하는 것으로 보아 작물체내 물질합성량, 유기배양액 사용기간 및 재이용 등 유기배양액의 화학적 특성 변화에 대한 연구가 필요할 것으로 판단된다.

BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several environmental problems: waste from culture mediums and high nitrate concentration in plants. Organic nutrients are generally irrigated as a supplementary fertilizer for plant growth promotion under field or greenhouse conditions. Hydroponic culture using organic nutrients derived from the agricultural by-products such as dumped stems, leaves or immature fruits is rarely considered in plant factory system. Effect of organic or conventional inorganic nutrient solutions on the growth and nutrient absorption pattern of green and red leaf lettuces was investigated in this experiment under fluorescent lamps (FL) and mixture Light-Emitting Diodes (LEDs). METHODS AND RESULTS: Single solution of tomatoes (TJ) and kales (K) deriving from agricultural by-products including leaves or stems and its mixed solution (mixture ration 1:1) with conventional inorganic Yamazaki (Y) were supplied for hydroponics under the plant factory system. The Yamazaki solution was considered as a control. 'Jeockchima' and 'Cheongchima' lettuce seedlings (Lactuca sativa L.) were used as plant materials. The seedlings which developed 2~3 true leaves were grown under the light qualities of FL and mixed LED lights of blue plus red plus white of 1:2:1 mixture in energy ratio for 35 days. Light intensity of the light sources was controlled at 180 μmol/㎡/s on the culture bed. The single and mixture nutrient solutions of organic and/or inorganic components which controlled at 1.5 dS/m EC and 5.8 pH were regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Number of unfolded leaves of the seedlings grown under the single or mixed nutrient solutions were significantly increased compared to the conventional Y treatment. Leaf extension of 'Jeockchima' under the mixture LED radiation condition was not affected by Y and YK or YTJ mixture treatments. SPAD value in 'Jeockchima' leaves exposed by FL under the YK mixture medium was approximately 45 % higher than under conventional Y treatment. Otherwise, the maximum SPAD value in the leaves of 'Cheongchima' seedlings was shown in YK treatment under the mixture LED lights. NO3-N contents in Y treatment treated with inorganic nutrient at the end of the experiment were up to 75% declined rather than increased over 60 % in the K and TJ organic treatment. CONCLUSION: Growth of the seedlings was affected by the mixture treatments of the organic and inorganic solutions, although similar or lower dry weight was recorded than in the inorganic treatment Y under the plant factory system. Treatment Y containing the highest NO3-N content among the considered nutrients influenced growth increment of the seedlings comparing to the other nutrients. However effect of the higher NO3-N content in the seedling growth was different according to the light qualities considered in the experiment as shown in leaf expansion, pigmentation or dry weight promotion under the single or mixed nutrients.

키워드

참고문헌

  1. Abu-Zahra, T. R., & Tahboub, A. A. (2009). Strawberry (Fragaria ${\times}$ ananassa Duch) fruit quality grown under different organic matter sources in a plastic house at Humrat Al-Sahen. Acta Horticulturae, 807, 353-358. https://doi.org/10.17660/actahortic.2009.807.49
  2. Amalfitano, C. A., Del Vacchio, L. D. V., Somma, S., Cuciniello, A. C., & Caruso, G. (2017). Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of 'Friariello' pepper grown in hydroponics. Horticultural Science, 44(2), 91-98. https://doi.org/10.17221/172/2015-HORTSCI
  3. Andersson, G. K., Rundlof, M., & Smith, H. G. (2012). Organic farming improves pollination success in strawberries. PLoS One, 7(2), e31599. https://doi.org/10.1371/journal.pone.0031599
  4. Atkin, K., & Nichols, M. A. (2003). Organic hydroponics. Acta Horticulturae, 648, 121-127, 10.17660/ActaHortic.2004.648.14.
  5. Bojarezuk, K. (2004). Effect of aluminium on the development of poplar (Populus tremula L. ${\times}$ P. alba L.) in vitro and in vivo. Polish Journal of Environmental Studies, 13(3), 261-266.
  6. Cardoso, P. C., Tomazini, A. P. B., Stringheta, P. C., Ribeiro, S. M., & Pinheiro-Sant'Ana, H. M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food chemistry, 126(2), 411-416. https://doi.org/10.1016/j.foodchem.2010.10.109
  7. Caruso, G., Conti, S., & La Rocca, G. (2011). Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Advances in horticultural science, 25(2), 81-89.
  8. Cha, M. K., Kim, J. S., & Cho, Y. Y. (2012). Growth response of lettuce to various levels of EC and light intensity in plant factory. Journal of Bio-Environment Control, 21(4), 305-311. https://doi.org/10.12791/KSBEC.2012.21.4.305
  9. Chen, X. L., Guo, W. Z., Xue, X. Z., Wang, L. C., & Qiao, X. J. (2014). Growth and quality responses of 'Green Oak Leaf'lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and lightemitting diode (LED). Scientia Horticulturae, 172, 168-175. https://doi.org/10.1016/j.scienta.2014.04.009
  10. Cho, Y. Y., Choi, K. Y., Lee, Y. B., & Son, J. E. (2012). Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Horticulture, Environment, and Biotechnology, 53(5), 368-372. https://doi.org/10.1007/s13580-012-0691-1
  11. Conti, S., Villari, G., Faugno, S., Melchionna, G., Somma, S., & Caruso, G. (2014). Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Scientia Horticulturae, 180, 63-71. https://doi.org/10.1016/j.scienta.2014.10.015
  12. Dasgan, H. Y., & Bozkoylu, A. (2007). Comparison of organic and synthetic-inorganic nutrition of soilless grown summer squash. Acta Horticulturae, 747, 523-528, https://doi.org/10.17660/ActaHortic.2007.747.68
  13. Fan, X. X., Xu, Z. G., Liu, X. Y., Tang, C. M., Wang, L. W., & Han, X. L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50-55. https://doi.org/10.1016/j.scienta.2013.01.017
  14. Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., & Saccardo, F. (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of agricultural and food chemistry, 54(12), 4319-4325. https://doi.org/10.1021/jf0602572
  15. Franklin, K. A., Larner, V. S., & Whitelam, G. C. (2005). The signal transducing photoreceptors of plants. The International Journal of Developmental Biology, 49, 653-664. https://doi.org/10.1387/ijdb.051989kf
  16. Fu, Y., Li, H., Yu, J., Liu, H., Cao, Z., Manukovsky, N. S., & Liu, H. (2017). Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Scientia horticulturae, 214, 51-57. https://doi.org/10.1016/j.scienta.2016.11.020
  17. Haddad, M., & Mizyed, N. (2011). Evaluation of various hydroponic techniques as decentralized wastewater treatment and reuse systems. International Journal of Environmental Studies, 68(4), 461-476. https://doi.org/10.1080/00207233.2011.582701
  18. Heo, J. W., Kim, H. H., Lee, K. J., Yoon, J. B., Lee, J. K., Huh, Y. S., & Lee, K. Y. (2015). Effect of supplementary radiation on growth of greenhouse-grown kales. Korean Journal of Environmental Agriculture, 34(1), 38-45. https://doi.org/10.5338/KJEA.2015.34.1.02
  19. Heo, J. W., Lee, J. S., Lee, G. I., & Kim, H. H. (2017). Growth of kale seedlings affected by the control of light quality and intensity under smart greenhouse conditions with artificial lights. Korean Journal of Environmental Agriculture, 36(3), 193-200. https://doi.org/10.5338/KJEA.2017.36.3.31
  20. Heo, J. W., Park, K. H., Lee, J. S., Hong, S. G., Lee, G. I., & Baek, J. H. (2018). Design of cloud-based data analysis system for culture medium management in smart greenhouse. Korean Journal of Environmental Agriculture, 37(4), 251-259. https://doi.org/10.5338/KJEA.2018.37.4.38
  21. Hirai, T., Amaki, W., & Watanabe, H. (2006). Effects of monochromatic light irradiation by LED on the internodal stem elongation of seedlings in eggplant, leaf lettuce and sunflower. Journal of Society of High Technology in Agriculture (Japan), 18(2), 160-166. https://doi.org/10.2525/shita.18.160
  22. Ikeda, A., Tanimura, Y., Ezaki, K., Kawai, Y., Nakayama, S., Iwao, K., & Kageyama, H. (1992). Environmental control and operation monitoring in a plant factory using artificial light. Acta Horticulturae, 304, 151-158, https://doi.org/10.17660/ActaHortic.1992.304.16.
  23. Inden, H., Akamastu, Y., Mastuda, T., & Yamamoto, M. (2011). Low cost plant factory using hybrid electrode fluorescent lamp (HEFL). Acta Horticulturae, 907, 157-160, https://doi.org/10.17660/ActaHortic.2011.907.21.
  24. Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54(6), 501-509. https://doi.org/10.1007/s13580-013-0109-8
  25. Kang, W. H., Park, J. S., Park, K. S., & Son, J. E. (2016). Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Horticulture, Environment, and Biotechnology, 57(6), 573-579. https://doi.org/10.1007/s13580-016-0093-x
  26. Khan, K., Yan, Z., & He, D. (2018b). Impact of light intensity and nitrogen of nutrient solutions on nitrate content in three lettuce cultivars prior to harvest. Journal of Agricultural Science, 10(6), 99-109. https://doi.org/10.5539/jas.v10n6p99
  27. Khan, K., Yan, Z., Abbas, A., & He, D. (2018a). Impact factors influencing the nitrate accumulation of leafy vegetables in plant factory. International Journal of Horticultural Science & Ornamental Plants, 4(1), 64-73.
  28. Khattak, A. M., & Pearson, S. (2005). Light quality and temperature effects on antirrhinum growth and development. Journal of Zhejiang University Science, B, 6(2), 119-124. https://doi.org/10.1631/jzus.2005.B0119
  29. Kim, D. G., Lee, C., Yun, Y. S., Hong, C. H., & Choi, Y. E. (2019). Recycling waste nutrient solution originating from the plant factory with the cultivation of newly isolated Acutodesmus species. Journal of Biotechnology, 289, 15-25. https://doi.org/10.1016/j.jbiotec.2018.10.010
  30. Kobayashi, K., Amore, T., & Lazaro, M. (2013). Light-Emitting Diodes (LEDs) for miniature hydroponic lettuce. Optics and Photonics Journal, 3(01), 74-77. https://doi.org/10.4236/opj.2013.31012
  31. Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceeding of the Japan Academy Series B, 89(10), 447-461. https://doi.org/10.2183/pjab.89.447
  32. Kumar, R. R., & Cho, J. Y. (2014). Reuse of hydroponic waste solution. Environmental Science and Pollution Research, 21(16), 9569-9577. https://doi.org/10.1007/s11356-014-3024-3
  33. Lee, G. J., Heo, J. W., Jung, C. R., Kim, H. H., Jo, J. S., Lee, J. G., Lee, G. J., Nam, S. Y., & Hong, E. Y. (2016). Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Horticulture and Plant Factory, 25(2), 77-82. https://doi.org/10.12791/KSBEC.2016.25.2.77
  34. Lee, S. G., Choi, C. S., Lee, J. G., Jang, Y. A., Nam, C. W., Yeo, K. H., Lee, H. J., & Um, Y. C. (2012). Effects of different EC in nutrient solution on growth and quality of red mustard and Pak-Choi in plant factory. Journal of Bio-Environment Control. 21(4), 322-326. https://doi.org/10.12791/KSBEC.2012.21.4.322
  35. Lopez, A., Fenoll, J., Hellin, P., & Flores, P. (2013). Physical characteristics and mineral composition of two pepper cultivars under organic, conventional and soilless cultivation. Scientia Horticulturae, 150, 259-266. https://doi.org/10.1016/j.scienta.2012.11.020
  36. Maneejantra, N., Tsukagoshi, S., Lu, N., Supoaibulwatana, K., Takagaki, M., & Yamori, W. (2016). A quantitative analysis of nutrient requirements for hydroponics Spinach (Spinacia oleracea L.) production under artificial light in a plant factory. Journal of Fertilizers & Pesticides, 7(2), 170-174.
  37. Martinez-Alcantara, B., Martinez-Cuenca, M., Bermejo, A., Legaz., F., & Quinones, A. (2016). Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in Citrus trees, PLoS One, 11(10), e0161619, 1-20. https://doi.org/10.1371/journal.pone.0161619
  38. Morrow, R. C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  39. Phibunwatthanawong, T., & Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 1-12.
  40. Promratrak, L. (2017). The effect of using LED lighting in the growth of crops hydroponics. International Journal of Smart Grid and Clean Energy, 6(2), 133-140. https://doi.org/10.12720/sgce.6.2.133-140
  41. Saito, Y., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2010). The effect of light quality on growth of lettuce, IFAC Proceedings Volumes, 43(26), 294-298. https://doi.org/10.3182/20101206-3-jp-3009.00052
  42. Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605-609. https://doi.org/10.3182/20110828-6-IT-1002.02683
  43. Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30(3), 339-343. https://doi.org/10.1007/s11738-007-0128-0
  44. Shoji, K., Goto, E., Hashida, S., Goto, F., & Yoshihara, T. (2011). Effect of light quality on the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.). Acta Horticulturae, 907, 95-99, https://doi.org/10.17660/ActaHortic.2011.907.10.
  45. Suarez, M. H., Rodriguez, E. R., & Romero, C. D. (2007). Mineral and trace element concentrations in cultivars of tomatoes. Food Chemistry, 104(2), 489-499. https://doi.org/10.1016/j.foodchem.2006.11.072
  46. Tennessen, D. J., Singsaas, E. L., & Sharkey, T. D. (1994). Light-emitting diodes as a light source for photosynthesis research. Photosynthesis research, 39(1), 85-92. https://doi.org/10.1007/BF00027146
  47. Yoon, C. G., & Choi, H. K. (2011). A study on the various light source radiation conditions and use of LED illumination for plant factory. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 25(10), 14-22. https://doi.org/10.5207/JIEIE.2011.25.10.014
  48. Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal Agricultural & Biological Engineering, 11(2), 33-40. https://doi.org/10.25165/j.ijabe.20181102.3240
  49. Zhang, Y., Kiriiwa, Y., & Nukaya, A. (2015). Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. The Horticulture Journal, 84(1), 37-45. https://doi.org/10.2503/hortj.MI-003