DOI QR코드

DOI QR Code

Principles and application of SNIF-NMR

  • Kwon, Hyeok (College of pharmacy and Institute of Pharmaceutical Sciences, CHA University) ;
  • Son, Woo Sung (College of pharmacy and Institute of Pharmaceutical Sciences, CHA University)
  • Received : 2019.12.08
  • Accepted : 2019.12.17
  • Published : 2019.12.20

Abstract

SNIF-NMR is one of the analytical methods used to discriminate impurities in food and natural products. To determine the origin of compounds, SNIF-NMR utilizes frequency of deuterium in site specific fractionated sample using nuclear magnetic resonance. Also, SNIF-NMR is currently used to evaluate the authenticity of various foods such as wine, vanillin and oil, and is known to provide more accurate information than other analytical methods. In this review, the basic principles and practical examples of SNIF-NMR is presented.

Keywords

References

  1. M. Esteki, J. Simal-Gandara, Z. Shahsavari, S. Zandbaaf, E. Dashtaki, and Y. Vander Heyden, Food Control 93, 165 (2018) https://doi.org/10.1016/j.foodcont.2018.06.015
  2. M. Herrero, M. Castro-Puyana, E. Ibanez, and A. Cifuentes, Compositional analysis of foods, in "Liquid Chromatography", Elsevier, 2017
  3. Z. Muccio and G. P. Jackson, Analyst 134, 213 (2009) https://doi.org/10.1039/B808232D
  4. M. Lees, "Food authenticity and traceability", Elsevier, 2003
  5. M. L. Martin and G. J. Martin, Deuterium NMR in the study of site-specific natural isotope fractionation (SNIF-NMR), in "Deuterium and shift calculation", Springer, 1990
  6. N. Ogrinc, I. J. Kosir, M. Kocjancic, and J. Kidric, J. Agr. Food Chem. 49, 1432 (2001) https://doi.org/10.1021/jf000911s
  7. J.-M. Ha, Y. M. Woo, and A. Kim, J. Kor. Magn. Reson. Soc. 22, 82 (2018) https://doi.org/10.6564/JKMRS.2018.22.4.082
  8. N. Ogrinc, I. Kosir, J. Spangenberg, and J. Kidric, Anal. Bioanal. Chem. 376, 424 (2003) https://doi.org/10.1007/s00216-003-1804-6
  9. G. S. Remaud, Y.-L. Martin, G. G. Martin, and G. J. Martin, J. Agr. Food Chem. 45, 859 (1997) https://doi.org/10.1021/jf960518f
  10. G. Remaud, A. A. Debon, Y.-l. Martin, G. G. Martin, and G. J. Martin, J. Agr. Food Chem. 45, 4042 (1997) https://doi.org/10.1021/jf970143d
  11. F. Low, Phys. Rev. 77, 361 (1950) https://doi.org/10.1103/PhysRev.77.361
  12. F. T. Miles and A. W. Menzies, J. Am. Chem. Soc. 58, 1067 (1936) https://doi.org/10.1021/ja01298a001
  13. R. Wellman, F. Cook, and H. Krouse, Science 161, 269 (1968) https://doi.org/10.1126/science.161.3838.269
  14. F. Westheimer, Chem. Rev. 61, 265 (1961) https://doi.org/10.1021/cr60211a004
  15. G. A. Webb, "Modern Magnetic Resonance: Part 1: Applications in Chemistry, Biological and Marine Sciences, Part 2: Applications in Medical and Pharmaceutical Sciences, Part 3: Applications in Materials Science and Food Science", Springer Science & Business Media, 2007
  16. H. Huber, J. Chem. Phys. 83, 4591 (1985) https://doi.org/10.1063/1.449030
  17. J. Noggle, "The nuclear Overhauser effect", Elsevier, 2012
  18. G. J. Martin, S. Akoka, and M. L. Martin, SNIF-NMR-Part 1: Principles, in "Modern Magnetic Resonance", Springer, 2008
  19. G. J. Martin, C. Guillou, M. L. Martin, M. T. Cabanis, Y. Tep, and J. Aerny, J. Agr. Food Chem. 36, 316 (1988) https://doi.org/10.1021/jf00080a019
  20. Z. Pang, Y. Kong, J. Li, and J. Tian, Procedia Earth Planet. Sci. 17, 534 (2017) https://doi.org/10.1016/j.proeps.2016.12.135
  21. A. Mariotti, J. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux, Plant Soil 62, 413 (1981) https://doi.org/10.1007/BF02374138
  22. J. Silfer, M. Engel, and S. Macko, Chem. Geol. (Isot. Geosci. Sect.) 101, 211 (1992) https://doi.org/10.1016/0009-2541(92)90003-N
  23. K. Scott, X. Lu, C. Cavanaugh, and J. Liu, Geochim. Cosmochim. Ac. 68, 433 (2004) https://doi.org/10.1016/S0016-7037(03)00459-9
  24. V. Dohnal and I. Horakova, Fluid Ph. Equilibria 68, 173 (1991) https://doi.org/10.1016/0378-3812(91)85016-N
  25. M. S. Lachniet, Quaternary Sci. Rev. 28, 412 (2009) https://doi.org/10.1016/j.quascirev.2008.10.021
  26. M. Martin, B. Zhang, and G. J. Martin, SNIF-NMR-Part 2: Isotope Ratios as Tracers of Chemical and Biochemical Mechanistic Pathways, in "Modern Magnetic Resonance", Springer, 2008
  27. C. J. Yapp and S. Epstein, Nature 297, 636 (1982) https://doi.org/10.1038/297636a0
  28. G. J. Martin, B. L. Zhang, N. Naulet, and M. L. Martin, J. Am. Chem. Soc. 108, 5116 (1986) https://doi.org/10.1021/ja00277a013
  29. P. A. Hays, G. S. Remaud, E. Jamin, and Y.-L. Martin, J. Forensic Sci. 45, 552 (2000)
  30. V. Ferronsky and V. Polyakov, "Isotopes of the Earth's Hydrosphere" Springer Science & Business Media, 2012
  31. J. Gray and S. J. Song, Earth Planet. Sc. Lett. 70, 129 (1984) https://doi.org/10.1016/0012-821X(84)90216-4
  32. N. Christoph, A. Rossmann, C. Schlicht, and S. Voerkelius, "Wine authentication using stable isotope ratio analysis: Significance of geographic origin, climate, and viticultural parameters", ACS Publications, 2007
  33. C. Guillou, G. Remaud, and G. J. Martin, Trends Food Sci. Tech. 2, 85 (1991) https://doi.org/10.1016/0924-2244(91)90634-U
  34. H. Craig, Science 133, 1833 (1961) https://doi.org/10.1126/science.133.3467.1833
  35. G. Martin, M. Benbernou, and F. Lantier, J. I. Brewing 91, 242 (1985) https://doi.org/10.1002/j.2050-0416.1985.tb04333.x
  36. R. Gonfiantini, Nature 271, 534 (1978) https://doi.org/10.1038/271534a0