DOI QR코드

DOI QR Code

An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach

  • Errico, Fabrizio (LTDS, Laboratoire de Tribologie et Dynamique des Systems, Ecole Centrale de Lyon) ;
  • Franco, F. (Pasta-Lab, Laboratory for promoting experiences in aeronautical structures and acoustics, Dipartimento di Ingegneria Industriale, Universita degli Studi di Napoli Federico II) ;
  • Ichchou, M. (LTDS, Laboratoire de Tribologie et Dynamique des Systems, Ecole Centrale de Lyon) ;
  • De Rosa, S. (Pasta-Lab, Laboratory for promoting experiences in aeronautical structures and acoustics, Dipartimento di Ingegneria Industriale, Universita degli Studi di Napoli Federico II) ;
  • Petrone, G. (Pasta-Lab, Laboratory for promoting experiences in aeronautical structures and acoustics, Dipartimento di Ingegneria Industriale, Universita degli Studi di Napoli Federico II)
  • 투고 : 2018.09.05
  • 심사 : 2019.04.29
  • 발행 : 2019.11.25

초록

The present work investigates the effect on the flow-induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach based on a wave finite element and a transfer matrix method. The structural vibrations, under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic analysis of finite structures, using an elementary periodic subsystem. Different flow regimes and shell curvatures are analysed and the computational efficiency is also discussed.

키워드

과제정보

This project has received funding from the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 675441. The author would like to gratefully acknowledge everyone involved in the VIPER project.

참고문헌

  1. W.V. Bhat,(1971), Use of correlation technique for estimating inight noise radiated by wing-mounted jet engines on a fuselage, Journal of Sound and Vibration,17(3), 349-355 https://doi.org/10.1016/0022-460X(71)90647-X
  2. F. Birgersson, S. Finnveden, G. Robert,(2004), Modelling turbulence-induced vibration of pipes with a spectral flnite element method, Journal of Sound and Vibration,278(3), 749-772 https://doi.org/10.1016/j.jsv.2003.10.024
  3. L. Brillouin,(1953) Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd edition, Dover Publications, INC., Mineola, New York.
  4. D.M. Chase,(1980), Modelling the wavevector-frequency spectrum of turbulent boundary layer wall pressure, Journal of Sound and Vibration 70 (1), 29-67. https://doi.org/10.1016/0022-460X(80)90553-2
  5. J-L. Christen, M. Ichchou, A. Zine, B. Troclet,(2016), Wave Finite Element Formulation of the Acoustic Transmission Through Complex Innite Plates, Acta Acustica united with Acustica 102(6), 984-991 https://doi.org/10.3813/AAA.919013
  6. D. Chronopoulos,(2012), Prediction of the vibroacoustic response of aerospace composite structures in a broadband frequency range, PhD thesis, Ecole Centrale de Lyon.
  7. E. Ciappi, F. Magionesi, S. De Rosa, F.Franco,(2012), Analysis of the scaling laws for the turbulence driven panel responses, Journal of Fluids and Structures 32, 90-103. https://doi.org/10.1016/j.jfluidstructs.2011.11.003
  8. G.M. Corcos,(1963), Resolution of pressure in turbulence, Journal of the Acoustical Society of America 35, 192-199. https://doi.org/10.1121/1.1918431
  9. V. D'Alessandro,(2014), Investigation and Assessment of the wave and flnite element method for structural waveguides, PhD thesis, University of Naples Federico II.
  10. S. De Rosa, F.Franco,(2008a), Exact and numerical responses of a plate under a turbulent boundary layer excitation, Journal of Fluids and Structures 24, 212-230. https://doi.org/10.1016/j.jfluidstructs.2007.07.007
  11. S. De Rosa, F.Franco,(2008b), A scaling procedure for the response of an isolated system with high modal overlap factor. Mechanical Systems and Signal Processing 22, 1549-1565. https://doi.org/10.1016/j.ymssp.2008.01.007
  12. C. Droz, C. Zhou, M.N. Ichchou, J.-P. Laine,(2016), A hybrid wave-mode formulation for the vibroacoustic analysis of 2D periodic structures, Journal of Sound and Vibration 363, 285-302. https://doi.org/10.1016/j.jsv.2015.11.003
  13. C. Droz, J.-P. Laine, M. Ichchou, G. Inquiete,(2014), A reduced formulation for the free-wave propagation analysis in composite structures, Composite Structures 113 134-144. https://doi.org/10.1016/j.compstruct.2014.03.017
  14. I. Elishako,(1983), Probabilistic Method in Theory of Structures, John Wiley and Sons, New York.
  15. B.M. Efimtsov,(1982), Characteristics of the field of turbulent wall pressure fluctuations at large Reynolds numbers, Soviet PhysicsAcoustics 28 (4), 289-292.
  16. F. Errico, M.N. Ichchou, S. De Rosa, O. Bareille, F. Franco,(2018a), A WFE and Hybrid FE/WFE technique for the forced response of stiffened cylinders, Advances in Aircraft and Spacecraft Science, An Int'l Journal, Vol 5-1.
  17. F. Errico, M.N. Ichchou, S. De Rosa, O. Bareille, F. Franco,(2018b), The modelling of the flow-induced vibrations of periodic flat and axial-symmetric structures with a wave-based method, Journal of Sound and Vibration, 424 32-47. https://doi.org/10.1016/j.jsv.2018.03.012
  18. F. Franco, S. De Rosa, E. Ciappi,(2013), Numerical approximations on the predictive responses of plates under stochastic and convective loads, Journal of Fluids and Structures 42, 296-312. https://doi.org/10.1016/j.jfluidstructs.2013.06.006
  19. J.P. Groby, A. Wirgin, L. De Ryck, W. Lauriks, R.P. Gilbert, Y.S. Xu,(2009), Acoustic response of a rigid-frame porous medium plate with a periodic set of inclusions, J. Acoust. Soc. Am. 126 685-693 https://doi.org/10.1121/1.3158936
  20. S.A. Hambric, Y.F. Hwang, W.K. Bonness,(2004), Vibration of plates with clamped and free edges excited by low-speed turbulent boundary layer, Journal of Fluids and Structures 19 93-110 https://doi.org/10.1016/j.jfluidstructs.2003.09.002
  21. M.N. Ichchou, B. Hiverniau, B. Troclet,(2009), Equivalent rain on the roof loads for random spatially correlated excitations in the mid frequency range, Journal of Sound and Vibration 322, 926-940. https://doi.org/10.1016/j.jsv.2008.11.050
  22. Kolaini, A. R., Tsuha, W., Fernandez, J. P. (2018). Spacecraft vibration testing: Benets and poten- tial issues. Advances in Aircraft and Spacecraft Science, 5(2), 165-175 https://doi.org/10.12989/AAS.2018.5.2.165
  23. Y. Li, Y. Zhang, D. Kennedy,(2017), Random Vibration analysis of axially compressed cylindrical shells under turbulent boundary layer in a symplectic system, Journal of Sound and Vibrations 406, 161-180 https://doi.org/10.1016/j.jsv.2017.06.018
  24. R.H. Lyon, G. DeJong,(1995), Theory and application of Statistical Energy Analysis, Buttersworths-Heimann.
  25. E. Manconi and B. R. Mace,(2008), Modelling wave propagation in two dimensional structures using flnite element analysis, Journal of Sound and Vibration, 318(45), 884-902 https://doi.org/10.1016/j.jsv.2008.04.039
  26. E. Manconi, B.R. Mace, R. Garziera,(2009), Wave flnite element analysis of fluid-filled pipes, At Noise and Vibration: Emerging Methods (NOVEM Conference).
  27. D. J. Mead,(1996) Wave propagation in continuous periodic structures: research contributions from Southampton, Journal of Sound and Vibration, 190(3), 495-524. https://doi.org/10.1006/jsvi.1996.0076
  28. Mehta, R.C. (2017). Analysis of payload compartment venting of satellite launch vehicle. Advances in Aircraft and Spacecraft Science, 4(4), 437-448 https://doi.org/10.12989/aas.2017.4.4.437
  29. J.-M. Mencik and M.N. Ichchou,(2007), Wave flnite elements in guided elastodynamics with internal fluid, International Journal of Solids and Structures, 44, 2148-2167 https://doi.org/10.1016/j.ijsolstr.2006.06.048
  30. J.-M. Mencik,(2010), On the low- and mid-frequency forced response of elastic structures using wave flnite elements with one-dimensional propagation, Computers and Structures 88, 674-689 https://doi.org/10.1016/j.compstruc.2010.02.006
  31. G. Mitrou, N. Ferguson, J. Renno,(2017), Wave transmission through two-dimensional structures by the hybrid FE/WFE approach, Journal of Sound and Vibration 389 484-501 https://doi.org/10.1016/j.jsv.2016.09.032
  32. J. Morsbol, S.V. Sorokin,(2015), Elastic wave propagation in curved flexible pipes, International Journal of Solids and Structures 75, 143-155. https://doi.org/10.1016/j.ijsolstr.2015.08.009
  33. J. M. Renno, B.R. Mace,(2014), Calculating the forced response of cylinders using the wave and flnite element method, Journal of Sound and Vibration 333, 5340-5355 https://doi.org/10.1016/j.jsv.2014.04.042
  34. J. Renno, B.R. Mace,(2013), Calculation of the reflection and transmission coefficients of joints using a hybrid flnite element/wave flnite element approach, Journal of Sound and Vibration 332 2149-2164 https://doi.org/10.1016/j.jsv.2012.04.029
  35. J. Renno, B.R. Mace,(2014), Vibration modelling of structural networks using a hybrid flnite element/wave and flnite element approach, Wave Motion 51 (4), 566-580. https://doi.org/10.1016/j.wavemoti.2013.09.001
  36. A.V. Smol'yakov, V.M. Tkachenko,(1991), Model of pseudosonic turbulent wall pressures and experimental data, Soviet PhysicsAcoustic 37 (6), 627-631.
  37. B. Troclet, B. Hiverniau, M.N. Ichchou, L. jezequel, K. Kayvantash, T. Bekkour, J.B. Mouillet and A. Gallet,(2009), FEM/SEA Hybrid Method for Predictiong Mid and High Frequency Structure-Borne Transmission, The Open Acoustics Journal, 2, 45-60. https://doi.org/10.2174/1874837600902010045
  38. Vaquer-Araujo, X., Schottle, F., Kommer, A., Konrad, W. (2018). Static and dynamic load superposition in spacecraft structural analysis. Advances in Aircraft and Spacecraft Science, 5(2), 259275 https://doi.org/10.12989/AAS.2018.5.2.259
  39. Y. Waki, B.R. Mace, M.J. Brennan,(2009), Numerical issues concerning the wave and flnite element method for free and forced vibrations of waveguides, Journal of Sound and Vibration 327, 92-108 https://doi.org/10.1016/j.jsv.2009.06.005
  40. J.F. Wilby, F.L. Gloyna,(1972) Vibration measurements of an airplane fuselage structure II. Jet noise excitation, Journal of Sound and Vibration 23(4), 467-486 https://doi.org/10.1016/0022-460X(72)90504-4
  41. J.E. Ffowcs Williams,(1982), Boundary layer pressures and the Corcos model: a development to incorporate low wavenumber constraints, Journal of Fluid Mechanics 125, 9-25. https://doi.org/10.1017/S0022112082003218
  42. M.Y. Yang, M.T. Palodichuk, N.E. Murray, B.J. Jansen,(2017), Prediction of Structural Response in Transonic Flow Using Wavenumber Decomposition of Fluctuating Pressures, AIAA Aviation 2017, 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado.