DOI QR코드

DOI QR Code

Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter

항공기를 이용한 온실가스 CO2와 CH4의 연속관측: 안면도 겨울철 연직분포사례 분석

  • Li, Shanlan (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Goo, Tae-Young (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Moon, Hyejin (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Labzovskii, Lev (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kenea, Samuel Takele (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Oh, Young-Suk (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Haeyoung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences)
  • 이선란 (국립기상과학원 기후연구과) ;
  • 구태영 (국립기상과학원 기후연구과) ;
  • 문혜진 (국립기상과학원 기후연구과) ;
  • ;
  • ;
  • 오영석 (국립기상과학원 기후연구과) ;
  • 이해영 (국립기상과학원 환경기상연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2019.06.19
  • Accepted : 2019.09.26
  • Published : 2019.12.31

Abstract

A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO2, CH4 and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO2, 0.5 ppb for CH4, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO2 shows clear altitude gradient, while the CH4 shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO2 at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH4 shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH4 distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH4 transport processes from tropical region to Korean region in winter season.

Keywords

References

  1. Bischof, W., 1962: Variations in concentration of carbon dioxide in the free atmosphere. Tellus, 14, 87-90. https://doi.org/10.1111/j.2153-3490.1962.tb00120.x
  2. Cambaliza, M. O. L., and Coauthors, 2014: Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions. Atmos. Chem. Phys., 14, 9029-9050, doi:10.5194/acp14-9029-2014.
  3. Chen, H., and Coauthors, 2010: High-accuracy continuous airborne measurements of greenhouse gases ($CO_2$ and $CH_4$) using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech., 3, 375-386, doi:10.5194/amt-3-375-2010.
  4. Delene, D. J., 2011: Airborne data processing and analysis software package. Earth Sci. Inform., 4, 29-44. https://doi.org/10.1007/s12145-010-0061-4
  5. Frankenberg, C., and Coauthors, 2008: Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophys. Res. Lett., 35, L15811, doi: 10.1029/2008GL034300.
  6. Frankenberg, C., S. S. Kulawik, S. C. Wofsy, F. Chevallier, B. Daube, E. A. Kort, C. O'Dell, E. T. Olsen, and G. Osterman, 2016: Using airborne HIAPER Pole-toPole observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmos. Chem. Phys., 16, 7867-7878, doi:10.5194/acp-16-7867-2016.
  7. Ha, S.-Y., G.-H. Lim, and H.-J. Kwon, 1997: The interrelationships between the atmospheric variations of the East-Asia jet stream and tropical conventions during the Northern Hemisphere wintertime, Asia-Pac. J. Atmos. Sci., 33, 299-314 (in Korean with English abstract).
  8. Halliday, H. S., and Coauthors, 2019: Using short-term CO/$CO_2$ ratios to assess air mass differences over the Korean Peninsula during KORUS-AQ. J. Geophys. Res., 124, 10951-10972, doi:10.1029/2018JD029697.
  9. Heimann, M., 2009: Searching out the sinks, Nat. Geosci., 2, 3-4. https://doi.org/10.1038/ngeo405
  10. Hsu, Y. K., T. VanCuren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish, 2010: Methane emissions inventory verification in southern California. Atmos. Environ., 44, 1-7, doi:10.1016/J.Atmosenv.2009.10.002.
  11. Jimenez, R., and Coauthors, 2005: Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer. Proc., INTEGRATED OPTOELECTRONIC DEVICES 2005, 5738, California, US, SPIE, 318-331.
  12. Karion, A., C. Sweeney, S. Wolter, T. Newberger, H. Chen, A. Andrews, J. Kofler, D. Neff, and P. Tans, 2013: Long-term greenhouse gas measurements from aircraft. Atmos. Meas. Tech., 6, 511-526, doi:10.5194/amt-6-511-2013.
  13. Kavitha, M., and P. R. Nair, 2016: Non-homogeneous vertical distribution of methane over Indian region using surface, aircraft and satellite based data. Atmos. Environ., 141, 174-185, doi:10.1016/j.atmosenv.2016.06.068.
  14. Keeling, C. D., T. B. Harris, and E. M. Wilkins, 1968: Concentration of atmospheric carbon dioxide at 500 and 700 Millibars. J. Geophys. Res., 73, 4511-4528. https://doi.org/10.1029/JB073i014p04511
  15. Keppler, F., J. T. G. Hamilton, M. Brass, and T. Rockmann, 2006: Methane emissions from terrestrial plants under aerobic conditions. Nature, 439, 187-191. https://doi.org/10.1038/nature04420
  16. Lee, H., S.-O. Han, S.-B. Ryoo, J.-S. Lee, and G.-W. Lee, 2019: The measurement of atmospheric $CO_2$ at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys., 19, 2149-2163, doi:10.5194/acp-19-2149-2019.
  17. Machida, T., K. Kita, Y. Kondo, D. Blake, S. Kawakami, G. Inoue, and T. Ogawa, 2002: Vertical and meridional distributions of the atmospheric $CO_2$ mixing ratio between northern midlatitudes and southern subtropics. J. Geophys. Res., 107, BIB 5-1-BIB 5-9, doi: 10.1029/2001JD000910.
  18. Machida, T., and Coauthors, 2008: Worldwide measurements of atmospheric $CO_2$ and other trace gas species using commercial airlines. J. Atmos. Ocean. Technol., 25, 1744-1754. https://doi.org/10.1175/2008JTECHA1082.1
  19. Messerschmidt, J., and Coauthors, 2011: Calibration of TCCON column-averaged $CO_2$: the first aircraft campaign over European TCCON sites. Atmos. Chem. Phys., 11, 10765-10777, doi:10.5194/acp-11-10765-2011.
  20. Miller, J. B., L. V. Gatti, M. T. S. d'Amelio, A. M. Crotwell, E. J. Dlugokencky, P. Bakwin, P. Artaxo, and P. P. Tans, 2007: Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett., 34, L10809, doi:10.1029/2006GL029213.
  21. NOAA/ESRL, cited 2019: Global Greenhouse Gas Reference Network [Available online at http://www.esrl.noaa.gov/gmd/ccgg/trends/.].
  22. Oh, Y.-S., and Coauthors, 2018: Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea. Atmos. Meas. Tech., 11, 2361-2374, doi:10.5194/amt-11-2361-2018.
  23. Peischl, J., and Coauthors, 2013: Quantifying sources of methane using light alkanes in the Los Angeles basin, California. J. Geophys. Res., 118, 4974-4990, doi: 10.1002/jgrd.50413.
  24. Rella, C. W., and Coauthors, 2013: High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech., 6, 837-860, doi:10.5194/amt-6-837-2013.
  25. Tang, W., and Coauthors, 2019a: Evaluating high-resolution forecasts of atmospheric CO and $CO_2$ from a global prediction system during KORUS-AQ field campaign. Atmos. Chem. Phys., 18, 11007-11030, doi: 10.5194/acp-18-11007-2018.
  26. Tang, W., and Coauthors, 2019b: Source contributions to carbon monoxide concentrations during KORUS-AQ based on CAM-chem model applications. J. Geophys. Res., 124, 2796-2822, doi:10.1029/2018JD029151.
  27. Tohjima, Y., and Coauthors, 2014: Temporal changes in the emissions of CH4 and CO from China estimated from $CH_4/CO_2$ and CO/$CO_2$ correlations observed at Hateruma Island. Atmos. Chem. Phys., 14, 1663-1677, doi:10.5194/acp-14-1663-2014.
  28. Tomsche, L., A. Pozzer, N. Ojha, U. Parchatka, J. Lelieveld, and H. Fischer, 2019: Upper tropospheric $CH_4$ and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission, Atmos. Chem. Phys., 19, 1915-1939, doi:10.5194/acp-19-1915-2019.
  29. Tsuboi, K., and Coauthors, 2013: Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system. Atmos. Meas. Tech., 6, 1257-1270, doi:10.5194/amt-6-1257-2013.
  30. Wennberg, P. O., and Coauthors, 2012: On the sources of methane to the Los Angeles atmosphere. Environ. Sci. Technol., 46, 9282-9289, doi:10.1021/es301138y.
  31. Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, 2009: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, L15810, doi:10.1029/2009GL039825.