DOI QR코드

DOI QR Code

Characterization of Leather Skin Layer Coatings on Water Dispersed Polyurethane Applied with Eathyl Acetate and Piperazine

Eathyl acetate와 Piperazine이 적용된 수분산 폴리우레탄의 Skin layer 코팅에 따른 특성 연구

  • Lee, Joo-Youb (Department of Fire and Disaster Prevention Engineering, Jungwon University)
  • 이주엽 (중원대학교 이공대학 신재생에너지자원학과)
  • Received : 2019.12.10
  • Accepted : 2019.12.23
  • Published : 2019.12.30

Abstract

In this study, prepolymer was synthesized through the reaction of isoporon diisocyanate (IPDI) and dimethylolbutanoic acid (DMBA) based on poly (tetramethylene ether) glycol (PTMG) for the synthesis of water-soluble polyurethane to be used as a leather surface coating applied with ethyl acetate and piperazine. Thereafter, the piperazine was chain-extended with 0.01 M, 0.03 M, 0.05 M, and 0.07 M in the water-dispersed resin, and the tensile strength, elongation, CV (cyclic voltammetry), and solvent resistance analysis were performed. Tensile strength of the prepared sample was measured at 5.422 kgf/㎟ when the piperazine content was 0.07M, and elongation was measured as 587% when the piperazine was 0.01M. Solvent resistance analysis showed the same solvent resistance regardless of piperazine content, and the redox potential was changed according to piperazine content through CV measurement.

본 연구에서는 에틸아세테이트와 피페라진을 적용한 가죽 표면 코팅제로 사용할 수용성 폴리우레탄의 합성을 위해 poly(tetramethylene ether) glycol(PTMG)를 기반으로 isoporon diisocyanate(IPDI)와 dimethylolbutanoic acid(DMBA)의 반응을 통해 프리폴리머를 합성하였다. 이후 수분산시킨 수지에 피페라진을 0.01M, 0.03M, 0.05M, 0.07M을 쇄연장 반응을 해서 각각의 인장강도, 연신율, CV(cyclic voltammetry), 내용제성 분석을 실시했다. 준비된 시료의 인장강도는 피페라진 함량 0.07M일때 5.422 kgf/㎟ 로 측정되었으며, 연신율을 측정한 결과 피페라진이 0.01M 일 때 587 %로 측정되었다. 내용제성 분석결과 피페라진 함량과 상관없이 동등한 내용제성으로 측정되었으며, CV 측정을 통해 피페라진 함량에 따라 산화환원전위가 변화되는 것을 확인 할 수 있었다.

Keywords

References

  1. Y. Han, J. l. Hu, Z. Xin, "Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing", Progress in Organic Coatings. Vol.207, pp. 679-688, (2019).
  2. B. Liu, Y. Li, Q. Wang, S. Bai, "Green fabrication of leather solid waste/ thermoplastic polyurethanes composite: Physically de-bundling effect of solid-state shear milling on collagen bundles", Composites Science and Technology, Vol.181, Article 107674, (2019).
  3. P. Lulinski, "Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy". Materials Science and Engineering. Vol.76, pp.1344-1353, (2017). https://doi.org/10.1016/j.msec.2017.02.138
  4. S. Czlonka, M. F. Bertino, K. Strzelec, A. Strakowska, M. Maslowski, "Rigid polyurethane foams reinforced with solid waste generated in leather industry", Polymer Testing, Vol.69, pp.225-237, (2018). https://doi.org/10.1016/j.polymertesting.2018.05.013
  5. A. Ghosal, O.U. Rahman, S. Ahmad, "High-performance soya polyurethane networked silica hybrid nanocomposite coatings", Industrial & Engineering Chemistry Research. Vol.54, pp. 12770-12787, (2015). https://doi.org/10.1021/acs.iecr.5b02098
  6. S. Khan, S. Masood, K. Siddiqui, M. Alam, F. Zafar, Q.M. Rizwanul Haque, N. Nishat, "Utilization of renewable waste material for the sustainable development of thermally stable and biologically active aliphatic amine modified Cardanol (phenolic lipid) - formaldehyde free standing films", Journal of Cleaner Production. Vol.196, pp.1644-1656, (2018). https://doi.org/10.1016/j.jclepro.2018.06.081
  7. M.P. Ansell, R.J. Ball, M. Lawrence, D. Maskell, A. Shea, P. Walker, Green composites for the built environment, p.123-148, (2017).
  8. D. Akram, E. Sharmin, S. Ahmad, "Linseed polyurethane/tetraethoxyorthosilane/ fumed silica hybrid nanocomposite coatings: Physico-mechanical and potentiodynamic polarization measurements studies", Progress in Organic Coatings. Vol.77, pp.957-964, (2014). https://doi.org/10.1016/j.porgcoat.2014.01.024
  9. S. Miao, P. Wang, Z. Su, S. Zhang, "Vegetable-oil-based polymers as future polymeric biomaterials", Acta Biomater. Vol.10, pp.1692-1704, (2014). https://doi.org/10.1016/j.actbio.2013.08.040
  10. S. Sundar, N. Vijayalakshmi, S. Gupta, R. R.ajaram, G. Radhakrishnan, "Aqueous dispersions of polyurethane-polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing", Progress in Organic Coatings, Vol.56, pp.178-184, (2006). https://doi.org/10.1016/j.porgcoat.2006.04.001
  11. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water + polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol.424, pp.58-67, (2016). https://doi.org/10.1016/j.fluid.2015.10.003
  12. H. Xu, H. Ning, Y. Chen, H. Fan, B. Shi, "Sulfanilamide-conjugated polyurethane coating with enzymatically-switchable antimicrobial capability for leather finishing", Progress in Organic Coatings, Vol.176, pp.924-934, (2013).
  13. I.W. Cheong, H. C. Kong, J.S. Shin, J. H. Kim. "Kinetic aspects of chain extension reaction using water-soluble diamines in aqueous polyurethane dispersion". Journal of Dispersion Science and Technology, Vol.23, pp.1-8, (2002). https://doi.org/10.1080/01932690208984184
  14. C. Ruan, N. Hu, Y. Hu, L. Jiang, Y. Wang, "Piperazine-based polyurethaneureas with controllable degradation as potential bone scaffolds", Polymer, Vol.55, pp1020-1027, (2014). https://doi.org/10.1016/j.polymer.2014.01.011
  15. G. Moghadam, F. Tirgir, A. H. Reshak, M. Khorshidi, "Specific features of 3, 6-bis (4-hydroxy phenyl)-piperazine-2, 5-dione (BHPPD) diphenolic monomer and compered with toxic industrial bisphenol-A (BPA): DFT calculation", Materials Chemistry and Physics, Vol.236, Arcicle.121780, (2019).