DOI QR코드

DOI QR Code

Effect of hydrogenation surface modification on dispersion and nucleation density of nanodiamond seed particle

수소화 표면 개질이 나노다이아몬드 seed 입자의 분산 및 핵형성 밀도에 미치는 영향

  • Choi, Byoung Su (Department of Nano Fusion Technology, Pusan National University) ;
  • Jeon, Hee Sung (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Um, Ji Hun (Department of Nano Fusion Technology, Pusan National University) ;
  • Hwang, Sungu (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, Jin Kon (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
  • 최병수 (부산대학교 나노융합기술학과) ;
  • 전희성 (부산대학교 나노메카트로닉스공학과) ;
  • 엄지훈 (부산대학교 나노융합기술학과) ;
  • 황승구 (부산대학교 나노메카트로닉스공학과) ;
  • 김진곤 (부산대학교 나노메카트로닉스공학과) ;
  • 조현 (부산대학교 나노메카트로닉스공학과)
  • Received : 2019.11.05
  • Accepted : 2019.12.05
  • Published : 2019.12.31

Abstract

Two hydrogenation surface modifications, namely hydrogen atmosphere heat treatment and hydrogen plasma treatment, were found to lead to improved dispersion of nanodiamond (ND) seed particles and enhanced nucleation density for deposition of smooth ultrananocrystalline diamond (UNCD) film. After hydrogenation, the C-O and O-H surface functionalities on the surface of nanodiamond particles were converted to the C-H surface functionalities, and the Zeta potential was increased. As the degree of dispersion was improved, the size of nanodiamond aggregates decreased significantly and nucleation density increased dramatically. After hydrogen heat treatment at 600℃, average size of ND particles was greatly reduced from 3.5 ㎛ to 34.5 nm and a very high nucleation of ~3.9 × 1011 nuclei/㎠ was obtained for the seeded Si surface.

수소 분위기 열처리 및 수소 플라즈마 처리의 두 가지 수소화 표면개질을통해 나노다이아몬드 seed 입자의 분산 향상 및 평탄한 초미세 나노결정질 다이아몬드 박막증착을 위한 핵형성 밀도 향상을 확보하였다. 수소화 처리 이후 나노다이아몬드 입자 표면의 탄소-산소 및 산소-수소 결합기가 탄소-수소 결합기로 전환되는 화학적 표면개질이 진행되었고 Zeta 전위가 증가하였다. 분산도 향상에 따라 나노다이아몬드 응집체 크기가 현저하게 감소하였고 핵형성 밀도는 크게 증가하였다. 600℃, 수소분위기에서 열처리 이후 나노다이아몬드 평균 입자 크기가 3.5 ㎛에서 34.5 nm로 크게 감소하였고, seeding 된 Si 기판 표면에서 ~3.9 × 1011 nuclei/㎠의 매우 높은 핵형성 밀도를 확보하였다.

Keywords

References

  1. J. Hees, N. Heidrich, W. Pletschen, R.E. Sah, M. Wolfer, O.A. Williams, V. Lebedev, C.E. Nebel and O. Ambacher, "Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films", Nanotechnol. 24 (2013) 025601. https://doi.org/10.1088/0957-4484/24/2/025601
  2. N. Moldovan, O. Auciello, A.V. Sumant, J.A. Carlisle, R. Divan, D.M. Gruen, A.R. Krauss, D.C. Mancini, A. Jayatissa and J. Tucek, "Micromachining of ultrananocrystalline diamond", Proc. SPIE. 4557 (2001) 288.
  3. M.W. Geis, N.N. Efremow, K.E. Krohn, J.C. Twichell, T.M. Lyszczarz, R. Kalish, J.A. Greer and M.D. Tabat, "A new surface electron-emission mechanism in diamond cathode", Nature 393 (1998) 431. https://doi.org/10.1038/30900
  4. J. Cvacka, V. Quaiserova, J.W. Park, Y. Show, A. Muck, Jr. and G.M. Swain, "Boron-doped diamond microelectrodes for use in capillary electrophoresis with electrochemical detection", Anal. Chem. 75 (2003) 2678. https://doi.org/10.1021/ac030024z
  5. O. Auciello and A.V. Sumant, "Status review of the science and technology of ultrananocrystalline diamond (UNCD) films and application to multifunctional devices", Diamond Relat. Mater. 19 (2010) 699. https://doi.org/10.1016/j.diamond.2010.03.015
  6. H. Wakao, T. Abe and T. Takagi, "Effect of nitric acid treatment on adhesion of diamond thin film deposited on cemented carbide", Surface Technol. 617 (2010) 516.
  7. M. Zhibin, W. Jianhua, W. Qingchong and W. Chuanxin, "Adhesion improvement of diamond films on cemented carbides with copper implant layer", Thin Solid Films 390 (2001) 104. https://doi.org/10.1016/S0040-6090(01)00946-4
  8. E. Osawa, "Synthesis, Properties and Applications of Ultrananocrystalline Diamond", D.M. Gruen, O.A. Shenderova and Y.V. Alexander, Eds. (Springer, Berlin, 2005) p. 231.
  9. A. Krueger, "The structure and reactivity of nanoscale diamond", J. Mater. Chem. 18 (2008) 1485. https://doi.org/10.1039/b716673g
  10. P. Ascarelli and S. Fontana, "Similar grit-size dependence of the diamond nucleation density on substrate surface pretreatments", Appl. Surf. Sci. 64 (1993) 307. https://doi.org/10.1016/0169-4332(93)90201-L
  11. S. Kamiya, N. Yoshida, Y. Tamura, M. Saka and H. Abe, "Enhancing nucleation density and adhesion of polycrystalline diamond films deposited by HFCVD using surface treatments on Co cemented tungsten carbide", Surf. Coat. Technol. 142 (2001) 738. https://doi.org/10.1016/S0257-8972(01)01115-X
  12. G.J. Lee, C.K. Kim, Y. Bae and C.K. Rhee, "Surface modification to improve hydrophobicity of detonation nanodiamond", J. Nanosci. Nanotechnol. 12 (2012) 5995. https://doi.org/10.1166/jnn.2012.6345
  13. Q. Zou, Y.G. Li, L.H. Zou and M.Z. Wang, "Nanopolycrystalline diamond sintered from onion-like carbon", Mater. Character. 60 (2009) 1257. https://doi.org/10.1016/j.matchar.2009.05.008
  14. H.P. Boehm, "Surface oxides on carbon and their analysis: a critical assessment", Carbon 40 (2002) 145. https://doi.org/10.1016/S0008-6223(01)00165-8
  15. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, "Characterization of instability of concentrated dispersions by a new optical analyzer: the TURBISCAN MA 1000", Colloids & Surf. 152 (1999) 111. https://doi.org/10.1016/S0927-7757(98)00680-3
  16. L. Gines, S. Mandal, A.I. Ahmed, C.L. Cheng, M. Sow and O.A. Williams, "Positive zeta potential of nanodiamonds", Nanoscale 9 (2017) 12549. https://doi.org/10.1039/C7NR03200E