DOI QR코드

DOI QR Code

Abnormal grain growth of ZnO ceramics

ZnO 세라믹스 거대입성장

  • Kim, Young Jung (Dept. of Advanced Materials Engineering, SunMoon University)
  • 김영정 (선문대학교 공과대학 신소재공학과)
  • Received : 2019.12.03
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

In the process of ZnO ceramic sintering at a temperature of 1385℃, higher than the normal sintering temperature, some grains were growth up to mm scale. When sintered at 1400℃ for 8 hours, the size of the grains that are not involved in the abnormal growth is as large as 30~40 ㎛, but the size of the abnormal grown grain reaches 1,000 ㎛, which is more than 10,000 times bigger in volume than the normal one within 8 hr growth. As a cause of rapid and abnormal grain growth, primary particle size distribution, compaction density variation within sample and doping of impurities could be considered. The primary particle size distribution could be considered main reason for abnormal grain growth but no solid evidence was obtained. Through the observation of the microstructure, it is presumed that the giant grains grow absorbing the neighbor grains through a grain rotation process.

ZnO를 통상적인 소결온도 이상의 온도 1385℃에서 소결하는 과정에서 mm 크기로 거대 성장된 입자를 갖는 세라믹스를 제조하였다. 1400℃에서 8시간 소결하는 경우 성장에 참여하지 않은 입자의 크기는 30~40 ㎛이고 거대 성장된 입자는 1,000 ㎛에 달하여 부피비 최소 10,000배 이상의 급속한 성장이 이루어졌다. 이러한 급속한 성장의 원인으로 일차 입자 크기분포, 성형압 불균일 또는 불순물의 합입등을 고려하였으며, 이들 중 일차입자 크기 분포일 것으로 추정되나 확실한 증거를 확보하지 못하였다. 미세구조 관찰을 통해 거대입자 성장은 주변의 입자를 통째로 합치는 과정을 통해 성장하는 것으로 추정된다.

Keywords

References

  1. T.J. Gray, "Sintering of zinc oxide", J. Am. Ceram. Soc. 37 (1954) 534. https://doi.org/10.1111/j.1151-2916.1954.tb13985.x
  2. V.J. Lee and G. Parravano, "Sintering reaction of zinc oxide", J. Appl. Phys. 30 (1959) 1735. https://doi.org/10.1063/1.1735046
  3. T.K. Gupta and R.L. Coble, "Sintering of ZnO: I, Densification and grain growth", J. Am. Ceram. Soc. 51 (1968) 521. https://doi.org/10.1111/j.1151-2916.1968.tb15679.x
  4. T.K. Gupta and R.L. Coble, "Sintering of ZnO: II, Density decrease and pore growth during the final stage of the process", J. Am. Ceram. Soc. 51 (1968) 525. https://doi.org/10.1111/j.1151-2916.1968.tb15680.x
  5. G.C. Nicholson, "Grain growth in zinc oxide", J. Am. Ceram. Soc. 48 (1965) 214. https://doi.org/10.1111/j.1151-2916.1965.tb14716.x
  6. L.F. Norris and G. Parravano, "Sintering of zinc oxide", J. Am. Ceram. Soc. 46 (1963) 449. https://doi.org/10.1111/j.1151-2916.1963.tb11774.x
  7. M. Matsuoka, "Nonohmic properties of zinc oxide ceramics", Jap. J. of Apl. Phys. 10 (1971) 736. https://doi.org/10.1143/JJAP.10.736
  8. Thomas E Anderson, "Metal oxide varistor polyphase transient voltage suppression", US3693053A.
  9. J. Wong, "Sintering and varistor characteristics of ZnO-$Bi_2O_3$ ceramics", J. Apl. Phys. 51 (1989) 4453. https://doi.org/10.1063/1.328266
  10. D.R. Clarke, "Varistor ceramics", J. Am. Ceram. Soc. 82 (1999) 485. https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  11. Y.-S. Yoo, M.-K. Kang, J.-H. Han, H. Kim and D.-Y. Kim, "Fabrication of $BaTiO_3$ single crystals by using the exaggerated grain growth method", J. Eur. Ceram. Soc. 17 (1997) 1725. https://doi.org/10.1016/S0955-2219(97)00017-4
  12. H. Kim, D.-Y. Kim, Y.-S. Yoo, Y.J. Kim, S.B. Kim, J.-H. Han and M.-K. Kang, "Barium titanate ($BaTiO_3$) single crystal using the abnormal grain growth Promotion Act", Korea pat, KR0143799B1.
  13. J.-S. Kim, J.-B. Lee, T.-M. Heo, H.-Y. Lee and D.-Y. Kim, "Secondary abnormal grain growth and (111) twin boundaries in $BaTiO_3$", J. Kor. Ceram. Soc. 36 (1999) 1310.
  14. J.B. Lim, S. Zhang, H.-Y. Lee and T.R. Shrout, "Solid state crystal growth of $BiScO_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$", J. Electroceram 29 (2012) 139. https://doi.org/10.1007/s10832-012-9745-0
  15. S.-J.L. Kang, J.-H. Park, S.-Y. Ko and H.-Y. Lee, "Solid-state conversion of single crystals: The principle and the State-of-the-Art", J. Am. Ceram. Soc. 98 (2015) 347. https://doi.org/10.1111/jace.13420