DOI QR코드

DOI QR Code

Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test

마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가

  • 박성환 ((주)한화 구미사업장 개발1팀) ;
  • 함영재 ((주)한화 구미사업장 개발1팀) ;
  • 김정석 (익스팬테크(주) 부설연구소) ;
  • 김경훈 (한국세라믹기술원 기업성장지원센터) ;
  • 소성민 (한국세라믹기술원 기업성장지원센터) ;
  • 전민석 (한국산업기술시험원 재료기술센터)
  • Received : 2019.11.19
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

Mica capacitor is being adopted for high voltage firing unit of guided weapon system because of its superior impact enduring property relative to ceramic capacitor. Reliability of localized mica high voltage capacitors was verified through environmental test like terminal strength test, humidity test, thermal shock test and accelerated life test for application to high voltage firing unit. Failure mode of mica capacitor is a decrease of insulation resistance and its final dielectric breakdown. Main constants of accelerated life model were derived experimentally and voltage constant and activation energy were 5.28 and 0.805 eV respectively. Lifetime of mica capacitor at normal use condition was calculated to be 38.5 years by acceleration factor, 496, and lifetime at accelerated condition and this long lifetime confirmed that mica high voltage capacitor could be applied for firing unit.

마이카 커패시터는 세라믹 커패시터에 비해 내고충격 특성이 우수하여 다양한 유도무기체계의 고전압 기폭장치에 적용된다. 본 연구에서는 국산화된 마이카 고전압 커패시터의 고전압 기폭장치 적용을 위해 단자강도시험, 내습성시험, 열충격시험과 같은 환경시험과 함께 가속 수명 시험을 진행하였다. 마이카 고전압 커패시터의 고장모드는 절연저항 감소 및 이를 통한 절연 파괴이다. 가속수명모델의 중요 상수를 실험적으로 도출하였으며 전압계수 n 및 활성화 에너지 Ea는 각각 5.28 및 0.805 eV이었다. 가속모델식을 이용하여 도출한 가속계수는 496이었으며 가속수명시험을 통해 도출된 정상 사용 조건에서의 마이카 고전압 커패시터의 수명은 38.5년으로 기폭장치 적용에 문제가 없는 것으로 확인되었다.

Keywords

References

  1. M.Y. Yilmaz, "Design and analysis of a high voltage exploding foil initiator for missile system", Ankara: middle East Technical University (2013) 157.
  2. Q. Tan, P. Irwin and Y. Cao, "Advanced dielectrics for capacitors", IEEJ Transactions on Fundamentals and Materials 126 (2006) 1153. https://doi.org/10.1541/ieejfms.126.1153
  3. D. Hennings, M. Klee and R. Waser, "Advanced dielectrics: bulk ceramics and thin films", Advanced Materials 3 (1991) 334. https://doi.org/10.1002/adma.19910030703
  4. J. Ho, T.R. J ow a nd S . Boggs, "Historical introduction to capacitor technology", IEEE Electrical Insulation Magazine 26 (2010) 20. https://doi.org/10.1109/MEI.2010.5383924
  5. E.J. Yun, C.S Choi, J.W Kim and D.H. Lee, "A study on development of high voltage mica capacitors", The transactions of the Korean Institute of Electrical Engineers 57 (2008) 1229.
  6. T.E. Goodeve, G.C. Stone and L. Macomber, "Experience with compact epoxy-mica capacitors for rotating machine partial discharge detection", proceedings: Electrical Electronics Insulaion Conference and Electrical Manufacturing & Coil Winding Conference. IEEE (1995) 685.
  7. M. Saleem, M.A. Ansari and A.K. Saxena, "Study of standard mica capacitors with respect to time and temperature" Mapan 28 (2013) 25. https://doi.org/10.1007/s12647-012-0036-7
  8. G.H. Rayner and L.H. Ford, "The stability of mica standards of capacitance" J. Sci. Inst. 28 (1951) 168. https://doi.org/10.1088/0950-7671/28/6/302
  9. MIL-STD-202H (Consolidated), Department of defense test method standard: Electronic and electrical component parts (April 18, 2015) 103.
  10. L.A. Escobar and W.Q. Meeker, "A review of accelerated test models", Statistical Science 21 (2006) 552. https://doi.org/10.1214/088342306000000321
  11. W. Nelson: Accelerated Testing: Statistical Models, Test Plans, Data Analyses (Wiley, New York 2004) p.317.
  12. J.F. Lawless: Statistical Models and Methods for Lifetime Data (John Wiley and Sons, New York 2002) p.269.