DOI QR코드

DOI QR Code

A study of sintering behavior of spray coating in CaO-Al2O3-SiO2 glasses on Al2O3 substrate

CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구

  • Na, Hyein (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jewon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Jae-Hyuk (IONES. Co. Ltd.) ;
  • Kim, Dae-Gun (IONES. Co. Ltd.) ;
  • Choi, Sung-Churl (Division of Materials Science and Engineering Hanyang University) ;
  • Kim, Hyeong-Jun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2019.10.28
  • Accepted : 2019.11.20
  • Published : 2019.12.31

Abstract

Two types of CaO-Al2O3-SiO2 (CAS) glass powder applied spray coating on the surface of sintered Al2O3 were researched for sintering behavior; (1) Si-rich, glass containing high content SiO2, (2) Ca-rich, containing high content CaO. Foaming of bubbles remaining inside the Ca-rich glass was produced at a viscosity of approximately 107~109 poise, resulting in decreasing shrinkage (interfering with sintering) and increasing surface roughness. In case of Si-rich glass, there was no serious foaming bubbles phenomenon like Ca-rich below 1000℃, however cristobalite crystals with low density occurred at 1200℃ and then produced re-foaming of bubbles, resulting in abnormal sintering behavior. These phenomenon is considered to be a decrease in viscosity due to an increase in the Ca content of the glass according to the formation of low-density cristobalite crystals. Therefore, in case of CAS glass, it is necessary to consider the increase of surface roughness and the sintering interference because of foaming bubbles phenomenon at low temperature sintering. Especially, when containing high SiO2 content, abnormal foaming phenomenon due to crystallization at high temperature should be predicted.

본 연구에서는 Al2O3 소결체 표면에 두 종류의 CaO-Al2O3-SiO2(CAS) 계 유리 분말을 스프레이 코팅(spray coating) 후 소성 거동에 대하여 연구하였다; (1) Si-rich, SiO2 함량이 높은 유리, (2) Ca-rich, CaO 함량이 높은 유리. Ca-rich 유리는 점도가 약 107~109 poise일 때 유리 내부에 잔존하는 기포들의 심한 발포 현상이 일어났고 이에 따라 소결 방해에 따른 수축율이 감소하였으며 조도는 증가하였다. 반면, Si-rich 유리의 경우, 1000℃ 이하에서는 Ca-rich와 같은 심각한 발포현상은 없었으나, 1200℃에서 밀도가 낮은 크리스토발라이트(cristobalite) 결정 발생과 함께 기포의 재발포 현상이 일어나 수축율이 감소하였으며 조도가 증가하는 이상 소성 거동을 보였다. 이는 저밀도 크리스토발라이트 결정 생성으로 인한 유리질의 칼슘 함량 증가에 의한 점도 감소로 생각된다. 따라서 CAS계 유리의 경우 저온 소성에서는 발포 현상에 의한 표면조도 상승과 소결 방해를 고려해야 하며, 특히 SiO2 함량이 높을 경우, 고온에서 결정화에 의한 이상 발포 현상도 생각해야 한다.

Keywords

References

  1. S.J. Park, J.K. Lee, Y.S. Oh, S. Kim, H. Kim and S. Lee, "The effects of water addition on the color and crystalline phase of $Y_2O_3$ coatings fabricated by plasma suspension spray", J. Korean Ceram. Soc. 53 (2016) 641. https://doi.org/10.4191/kcers.2016.53.6.641
  2. J.K. Lee, S.J. Park, S. Kim, H. Kim and S.M. Lee, "Fragmentation behavior of $Y_2O_3$ suspension in axially fed suspension plasma spray", Surf. Coat. Technol. 309 (2017) 456. https://doi.org/10.1016/j.surfcoat.2016.11.021
  3. J.H. Choi, H. Na, J. Park and H.J. Kim, "Plasma corrosion resistance of aluminosilicate glasses containing Ca, Y and B under fluorocarbon plasma with $Ar^+$", J. Non-Cryst. Solids 521 (2019) 119498. https://doi.org/10.1016/j.jnoncrysol.2019.119498
  4. J.H. Choi, H.B. Park, H. Na and H.J. Kim, "Plasma corrosion resistance of RO-$Al_2O_3-SiO_2$ (R: Alkaline Earth) under Fluorocarbon Plasma with $Ar^+$: II. Plasma Resistant Glass", Corros. Sci. 146 (2019) 247. https://doi.org/10.1016/j.corsci.2018.10.015
  5. H. Na, J. Park, S.C. Choi and H.J. Kim, "The effect of composition of plasma resistance of CaO-$Al_2O_3-SiO_2$ glasses under Fluorocarbon Plasma with $Ar^+$", Appl. Surf. Sci. 476 (2019) 663. https://doi.org/10.1016/j.apsusc.2019.01.133
  6. H.J. Kim, Korean lntellectual Property office, No.10-1581666, "Recycling method of ceramic member using glass hard coating agent composition for recycling ceramic member" (2015).
  7. H.J. Kim, Korean lntellectual Property office, No.10-1965223, "Regeneration method of ceramic member for recycle" (2019).
  8. H.J. Kim, Korean lntellectual Property office, No.10-1988223, "Regeneration method of ceramic member for recycle using amorphous hard coating composition for recycling ceramic member" (2019).
  9. Satsuka, Sumio, Sakaino, Teruo, Takahashi, Katsuaki, "Glass handbook (ガラスヘンドブック)", ed. 3 (Asakura Shoten, Tokyo, 1975) p. 888.
  10. Y. Masayuki, "For the first time to make glass (はじめてガラスを作る人のために)", Ceramics Basic Lecture/Tokyo Institute of Technology School of Engineering, Department of Inorganic Materials Engineering, ed. 4 (Uchida Old Crane Field, Tokyo, 1991).
  11. G.H. Hwang, H.J. Jeon and Y.S. Kim, "Physical properties of barrier ribs of plasma display panels: 1, Formation of pores during sintering of lead borosilicate glass frits", J. Am. Ceram. Soc. 85 (2002) 2956. https://doi.org/10.1111/j.1151-2916.2002.tb00562.x
  12. K.H. Jun, "Study on the bloating mechanism for Artificial Lightweight Aggregate of surface reforming", Department of Material Science & Engineering Graduate School Kyonggi University (2012).
  13. A. Karamanov and M. Pelino, "Sinter-crystallisation in the diopside-albite system Part I. Formation of induced crystallisation porosity", J. Eu. Ceram. Soc. 26 (2006) 2511. https://doi.org/10.1016/j.jeurceramsoc.2005.06.042
  14. E.D. Zanotto and A. Galhardi, "Experimental test of the general theory of transformation kinetics: Homogeneous nucleation in a $Na_2O-2CaO-3SiO_2$ glass", J. Non-Cryst. Solids 104 (1988) 73. https://doi.org/10.1016/0022-3093(88)90184-6
  15. M.O. Prado and E.D. Zanotto, "Glass sintering with concurrent crystallization", C. R. Chimie 5 (2002) 773. https://doi.org/10.1016/S1631-0748(02)01447-9
  16. E.M. Rabinovich, "Preparation of glass by sintering", J. Mate. Sci. 20 (1985) 4259. https://doi.org/10.1007/BF00559317
  17. Y.A. Malinovskii and Z.V. Panina, "X-ray study of chromium- and boron-doped synthetic $Ga_2Al(AlSi)O_7$ gehlenites", Crystallography Reports 41 (1996) 222.
  18. Y.V. Seryotkin, E.V. Sokol and S.N. Kokh, "Natural pseudowollastonite: Crystal structure, associated minerals and geological context", Lithos 134-135 (2012) 75. https://doi.org/10.1016/j.lithos.2011.12.010
  19. C.A. Geiger and T. Armbruster, "$Mn_3Al_2Si_3O_{12}$ spessartine and $Ca_3Al_2Si_3O_{12}$ grossular garnet: Structural dynamic and thermodynamic properties", American Mineralogist 82 (1997) 740. https://doi.org/10.2138/am-1997-7-811
  20. J.B. Parise, A.Y. Haeri, D.J. Weidner, J.D. Jorgensen and M.A. Saltzberg, "Pressure-induced phase transition and pressure dependence of crystal structure in low (${\alpha}$) and Ca/Al-doped cristobalite", J. Appl. Phys. 75 (1994) 1361. https://doi.org/10.1063/1.356415
  21. S.H. Abd El Rahim, A.A. Melegy and E.M.A. Hamzawy, "Wollastonite-pseudoollastonite from silica fume, limestone and glass cullet composite", Inter Ceram (2017) p. 232.
  22. F. Pei, "Influence of low magnesia content on the CaO-$Al_2O_3-SiO_2$ glass-ceramics: Its crystallization behavior, microstructure and physical properties", Ceram. Inter. 44 (2018) 20132. https://doi.org/10.1016/j.ceramint.2018.07.306
  23. Z.Y. Merkit, H.O. Toplan and N. Toplan, "The crystallization kinetics of CaO-$Al_2O_3-SiO_2$ (CAS) g la ss-cera mics system produced from pumice and marble dust", J. Ther. Anal. Calori. 134 (2018) 807. https://doi.org/10.1007/s10973-018-7571-6
  24. M.S. B a pna a nd H .J. Mueller, "Study of d evitrification of Dicer@ glass", Biomateriols 17 (1996) 2045. https://doi.org/10.1016/0142-9612(96)00024-5