DOI QR코드

DOI QR Code

Partial premixed combustion modeling of diffusion flame burner for SiO2 deposition as optical fiber cladding

광섬유 클래딩용 SiO2 증착을 위한 확산 화염 버너의 부분 예혼합 연소 모델링

  • Park, Hyung-Bin (Innovation for Creative Device) ;
  • Han, Yoonsoo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 박형빈 ((주)아이씨디) ;
  • 한윤수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2019.11.11
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

In this study, the flame temperature distribution of the diffusion flame burner for SiO2 deposition was analyzed by the computational fluid analysis. This corresponds to the previous step for simulating the SiO2 preform deposition process for manufacturing optical fibers using environmentally friendly raw materials. In order to model premixed combustion, heat flow, convection, and chemical reactions were considered, and Reynolds-averaged Navier-Stokes equations and k-ω models were used. As a result, the temperature distribution of the flame showed a tendency to increase the distance from the nozzle surface to the maximum temperature when the flow rate of the auxiliary oxygen increased. In addition, it was confirmed that the temperature distribution due to incomplete combustion was large in the combustion reaction with a large equivalence ratio of the mixed gas.

본 연구에서 SiO2 증착용 확산 화염 버너의 연료와 산소의 비율 변화에 따른 화염의 온도 분포를 전산 유체 해석을 수행하였다. 이는 친환경 원료물질을 이용한 광섬유 제조용 SiO2 프리폼 증착 공정을 시뮬레이션하기 위한 전단계에 해당한다. 예혼합 연소를 모델링하기 위해서 열 유동, 대류 및 화학 반응을 고려하였고 Reynolds-averaged Navier-Stokes 방정식과 k-ω 모델을 사용하였으며, 실제 화염의 온도 분포와 형상을 비교하여 연소 모델링의 적절성을 확인하였다. 결과적으로 화염의 온도 분포는 보조 산소의 유량이 증가하면 노즐 표면으로부터 최고 온도까지의 거리가 증가하는 경향성을 보였다. 또한 혼합 가스의 당량비가 큰 연소 반응에서 불완전 연소로 인한 온도 분포의 폭이 크게 나타나는 것을 확인하였다.

Keywords

References

  1. A. Ghatak and K. Thyagarajan, "Introduction to Fiber Optics", 1st Ed. (Cambridge Univ. Press, Cambridge, 1998) p. 9.
  2. S.R. Nagel, J.B. MacChesney and K.L. Walker, "An overview of the modified chemical vapor deposition (MCVD) process and performance", IEEE J. Quantum Electron. 30 (1982) 459.
  3. M.G. Blankenship and C.W. Deneka, "The outside vapor deposition method of fabricating optical waveguide fibers", IEEE Trans. Microw. Theory Tech. 30 (1982) 1406. https://doi.org/10.1109/TMTT.1982.1131273
  4. T. Izawa and N. Inagaki, "Materials and processes for fiber preform fabrication-vapor-phase axial deposition", Proc. IEEE 68 (1980) 1184. https://doi.org/10.1109/PROC.1980.11827
  5. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding", Nature 426 (2003) 816. https://doi.org/10.1038/nature02193
  6. H.K. Kammler and S.E. Pratsinis, "Scaling-up the production of nanosized $SiO_2$-particles in a double diffusion flame aerosol reactor", J. Nanoparticle Res. 1 (1999) 467. https://doi.org/10.1023/A:1010080004637
  7. B.F. Magnussen and B.H. Hjertager, "On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion", Int. Sympo. Combus. 16 (1977) 719. https://doi.org/10.1016/S0082-0784(77)80366-4
  8. F.M. El-Mahallawy and S. EL-Din Habik, "Fundamentals and technology of combustion", 1st Ed. (Elsevier science, Oxford, 2002) p. 1.
  9. K.N. Marsh, "Mutual diffusion in octamethylcyclotetrasiloxane mixtures", Trans. Faraday Soc. 64 (1968) 894. https://doi.org/10.1039/tf9686400894
  10. G. Alfonsi, "Renolds-averaged navier-stokes equations for turbulence modeling", Appl. Mech. Rev. 62 (2009) 1. https://doi.org/10.1115/1.3124648
  11. S.A. Ahmed and A.S. Nejad, "Premixed, turbulent combustion of axisymmetric sudden expansion flows", Int. J. Heat Fluid Fl. 13 (1992) 15. https://doi.org/10.1016/0142-727X(92)90055-E
  12. D.G. Norton and D.G. Vlachos, "Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures", Chem. Eng. 58 (2003) 4871. https://doi.org/10.1016/j.ces.2002.12.005
  13. A. Schild, A. Gutsch, H. Muhlenweg and S.E. Pratsinis, "Simulation of nanoparticle production in premixed aerosol flow reactors by interfacing fluid mechanics and particle dynamics", J. Nanoparticle Res. 1 (1999) 305. https://doi.org/10.1023/A:1010025121980
  14. D.C. Wilcox, "Turbulence Modeling for CFD", 3rd Ed. (DCW Industries Inc, California, 1993) p. 73.
  15. W.J. Stark and S.E. Pratsinis, "Aerosol flame reactors for manufacture of nanoparticles", Powder Technol. 126 (2002) 103. https://doi.org/10.1016/S0032-5910(02)00077-3
  16. S. Subramaniam and S.B. Pope, "Comparison of mixing model performance for nonpremixed turbulent reactive flow", Combust. Flame 117 (1999) 732. https://doi.org/10.1016/S0010-2180(98)00135-7