DOI QR코드

DOI QR Code

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics

유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구

  • Kim, Young-Man (Department of Mechanical Engineering, Chungnam National Univ.) ;
  • Kim, Yong-Hwan (Department of Mechanical Engineering, Chungnam National Univ.)
  • 김영만 (충남대학교 기계공학부) ;
  • 김용환 (충남대학교 기계공학부)
  • Received : 2019.06.25
  • Accepted : 2019.10.08
  • Published : 2019.12.31

Abstract

Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

유한요소법(finite element method)은 다양한 분야에서 재료의 역학적 거동을 더욱더 현실적으로 해석하고 예측하는 방법으로 다양한 분야의 제품 개발에 적용되고 있다. 하지만 섬유배향과 변형률 속도가 역학적 특성에 영향을 미치는 유리섬유 강화 플라스틱 복합재료에 관한 수치해석을 이용한 접근 방법은 현재까지 다소 어려움이 있다. 본 연구의 목적은 고분자, 고무, 금속 등과 같은 다양한 복합재료를 위한 선형, 비선형 다중스케일 재료 모델링 프로그램인 Digimat의 수치해석 재료 모델을 활용하여 유리섬유 강화 플라스틱 복합재료의 역학적 특성을 정의하고 검증하는 것에 있다. 또한 이를 통해 좀더 현실적으로 고분자 복합재료의 거동을 예측하고자 한다. 이를 위해 다양한 고분자 중 30wt%의 단섬유 질량 비율을 갖는 폴리부틸렌 텔레프탈레이트(polybutylene terephthalate, PBT)의 섬유배향과 변형률 속도에 따른 인장 특성을 참고문헌을 통해 조사하였다. 또한 Moldflow 프로그램을 사용한 사출해석을 통해 유리섬유 배향 정보를 계산하였으며 이를 매핑(mapping) 과정을 통해 유한요소 인장 시편 모델에 전달하였다. 대표적인 유한요소 상용 프로그램 중 하나인 LS-DYNA는 유리섬유 배향과 변형률 속도에 따른 복합재료의 인장 특성을 연구하기 위해 Digimat과의 연성해석(coupled analysis)에 활용되었다. 그리고 유리섬유 강화 플라스틱 복합재료를 해석하기 위한 LS-DYNA의 다양한 비등방성(anisotropic) 재료 모델들의 장단점을 서로 비교하고 평가하였다.

Keywords

References

  1. Bernasconi, A., Cosmi, F. (2008) Local Anisotropy Analysis of Injection Moulded Fibre Reinforced Polymer Composites, Compos. Sci. Technol., 68, pp.2574-2581. https://doi.org/10.1016/j.compscitech.2008.05.022
  2. Brunbaer, J., Mosenbacher, A. (2014) Fundamental Influences on Quasistatic and Cyclic Material Behavior of Short Glass Fiber Reinforced Polyamide Illustrated on Microscopic Scale, J. Appli. Polym. Sci., 131(19).
  3. De Monte, M., Moosbrugger, E. (2010) Influence of Temperature and Thickness on the Off-axis Behaviour of Short Glass Fibre Reinforced Polyamide 6.6-Quasi-static Loading, Compos. Part A: Appl. Sci. & Manuf., 41(7), pp.859-871. https://doi.org/10.1016/j.compositesa.2010.02.018
  4. Digimat (2018) User's Manual, Ex-stream Engineering, pp.259-457.
  5. Dobes, M., Navratil, J. (2017) Computational Material Models for TSCP Plastics Comparison of the Deformation behavior with *MAT_24 and *MAT_SAMP-1 with DIEM, 11th European LS-DYNA Conference.
  6. Esmaeillou, B., Ferreira, P. (2012) Fatigue Behavior of Polyamide 66/Glass Fiber under Various Kinds of Applied Load, Polymer Compos., 33(4), pp.540-547. https://doi.org/10.1002/pc.22185
  7. Gullu, A., Ozdemir, A. (2006) Experimental Investigation of the Effect of Glass Fibers on the Mechanical Properties of Polypropylene(PP) and Polyamide 6(PA6) Plastics, Mater. & Des., 27(4), pp.316-323. https://doi.org/10.1016/j.matdes.2004.10.013
  8. Hatt, A. (2014) Anisotropic Modeling of Short Fibers Reinforced Thermoplastics Material with LS-DYNA, 13th LS-DYNA German Forum, Bamberg.
  9. Hubert, L. (2007) Methodology for Selection of Material Material for Plastics Impact Simulation, 6th European LS-DYNA Conference.
  10. Kamaya, M. (2016) Ramberge Osgood Type Stresse Strain Curve Estimation using Yield and Ultimate Strengths for Failure Assessments, Int. J. Press. Vessel. & Pip., 137, pp.1-12. https://doi.org/10.1016/j.ijpvp.2015.04.001
  11. Kim, Y.J., Huh, N.S. (2004) On Relevant Ramberg-Osgood Fit to Engineering Nonlinear Fracture Mechanics Analysis, J. Press. Vessel. Technol., 126(3), pp.277-283. https://doi.org/10.1115/1.1760767
  12. Korte, W., Pazour, S. (2016) Potential of MAT15 7 for Short Fiber-reinforced Injection Molded Plastic Components, LS-DYNA Forum.
  13. Linn, J. (2005) The Folgar-Tucker Model as a Differential Algebraic System for Fiber Orientation Calculation, ITWM, 75, pp.2-4.
  14. LS-DYNA (2016) R9.0 KEYWORD USER'S MANU AL-Material Models, LSTC, 2-79-2-807.
  15. Mortazavian, S. (2015) Fatigue Behavior and Modeling of Short Fiber Reinforced Polymer Composites, Eng.D., University of Toledo, p.409.
  16. Mortazavian, S., Fatemi, A. (2017) Tensile behavior and Modeling of Short Fiver-reinforced Polymer Composites including Temperature and Strain Rate Effects, J. Thermoplast. Compos. Mater., 30(10), pp.1414-1437. https://doi.org/10.1177/0892705716632863
  17. Park, J.M., Kim, H.D. (2015) Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester based Resin Composite, Korean Soc. Dyers & Finish., 9, pp.165-174.
  18. Pierantoni, M., De Monte, M. (2011) Viscoelastic Material behaviour of PBT-GF30 under Thermo-Mechanical Cyclic Loading, Proced. Eng., 10, pp.2141-2146. https://doi.org/10.1016/j.proeng.2011.04.354
  19. Schaaf, A., De Monte, M. (2014) Life Estimation Methodology for Short Fiber Reinforced Polymers under Thermo-Mechanical Loading in Automotive Applications, Mater. Sci. & Eng. Technol., 46(2), pp.214-228.
  20. Tanaka, K., Kitano, T. (2014) Effect of Fiber Orientation on Fatigue Crack Propagation in Short-fiber Reinforced Plastics, Eng. Fract. Mech., 123, pp.44-58. https://doi.org/10.1016/j.engfracmech.2014.03.019
  21. Thomason, J.L. (1996) The Influence of Fibre Length and Concentration on the Properties of Glass Fibre Reinforced Polypropylene, Compos. Part A: Appl. Sci. & Manuf., 27(6), pp.447-484. https://doi.org/10.1016/1359-835X(95)00053-5
  22. Thomason, J.L. (1999) The Influence of Fibre Properties of the Performance of Glass Fibre Reinforced Polyamide 6,6, Compos. Sci. Technol, 59, pp.2315-2328. https://doi.org/10.1016/S0266-3538(99)00083-4
  23. Thomason, J.L. (2006) Structure-Property Relationships in Glass-reinforced Polyamide, Part 1: The Effects of Fiber Content, Polym. Compos., 27, pp.552-562. https://doi.org/10.1002/pc.20226
  24. Wang, Z., Zhou, Y. (2002) Effects of Temperature and Strain Rate on the Tensile behavior of Short Fiber Reinforced Polyamide-6. Polym. Compos., 23(5), pp.858-871. https://doi.org/10.1002/pc.10484
  25. Zhou, Y., Mallick, P.K. (2005) A Non-linear Damage Model for the Tensile behavior of an Injection Molded Short E-glass Fiber Reinforced Polyamide-6,6. Mater. Sci. & Eng.: A, 393(1), pp.303-309. https://doi.org/10.1016/j.msea.2004.10.038