DOI QR코드

DOI QR Code

Hetero-core Optical Fiber Exposure Sensor Module and Instrumentation Delay

헤테로코어 광파이버 노출형 센서모듈과 계측 지연현상

  • Song, Young-Yong (Department of Civil Engineering, Pukyong National Univ.) ;
  • Park, Eik-Tae (Department of Civil Engineering, Pukyong National Univ.) ;
  • Lee, Hwan-Woo (Department of Civil Engineering, Pukyong National Univ.)
  • Received : 2019.10.07
  • Accepted : 2019.10.21
  • Published : 2019.12.31

Abstract

The objective of this study is to develop a new type of buried sensor module that can directly assess pre-stressed concrete by measuring strain using a hetero-core optical fiber sensor. In this regard, experiments were conducted to evaluate the performance of the sensor using an exposure sensor module. Based on the experimental results, when the values of the displacement control velocity were 0.12 mm/min and 1.80 mm/min, the corresponding delays in the measurement were 52.1 s and 2.6 s respectively, which indicated that the maximum delay between the two measurements was a factor of 19. Due to the measurement delay phenomena, the sensor module used in the experiments cannot be employed to check the real-time state of the structure. Thus, additional experiments were needed to develop a new sensor module that can measure the real-time state of the structure. To investigate the cause of the measurement delay phenomena, three experiments were conducted. It was confirmed that measurement delay is mainly attributed to frictional resistance. The measurement delay phenomena were not observed in the experiments using the friction-removed device.

본 연구는 헤테로코어 광파이버 센서를 활용하여 콘크리트 내부에서 발생되는 변형률의 측정을 통해 콘크리트의 프리스트레스를 직접 평가할 수 있는 새로운 매립형 센서모듈 개발을 최종 목표로 하고 있다. 이를 위하여 노출형 센서모듈을 이용한 성능발현 실험결과는 가력속도 0.12, 1.80mm/min일 때 52.1, 2.6sec로 최대 약 19배의 계측 지연현상이 발생하였다. 계측 지연현상은 구조물의 실시간 변화 상태를 계측하지 못하는 경우로 실시간 계측이 가능한 센서모듈의 개발을 위해서 추가실험이 필요한 것으로 판단하였다. 계측 지연현상 원인규명 실험은 3가지의 실험을 계획하였으며, 실험결과는 마찰저항에 의한 계측 지연이 지배적으로 확인되었다. 마찰이 제거된 장치를 이용한 센서모듈의 실험결과에서는 계측 지연현상이 나타나지 않은 것으로 확인되었다.

Keywords

References

  1. Atsushi, S., Hisakazu, K., Toshinori, K., Mitsuhiro, I., Kazuhiro, W. (2007) A Hetero-core Structured Fiber Optic pH Sensor, Anlytica chim. Acta, 582(1), pp.154-157. https://doi.org/10.1016/j.aca.2006.08.061
  2. Bartoli, I., Phillips, R., di Scalea, F.L., Salamone, S., Coccia, S., Sikorsky, C.S. (2008) Load Monitoring in Multiwire Strands by Interwire Ultrasonic Measurements, Proc. of SPIE, 6932, pp.1-12.
  3. Chen, H.-L., Wissawapaisal, K. (2001) Measurement of Tensile Forces in a Seven-Wire Prestressing Strand Using Stress Waves. J. Eng. Mech., 127(6), pp.599-606. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(599)
  4. Glisic, B., Inaudi, D. (2008) Fiber Optic Methods for Structural Health Monitoring, John Wiley & Sons, Ltd., Chichester. p.276.
  5. Idriss, R.L. (2001) Monitoring of a High Performance Prestressed Concrete Bridge with Embedded Optical Fiber Sensors during Fabrication, Construction and Service, 10th Int. Conf. Struct. Faults & Repair, London, England.
  6. Inaudi, D., Elamari, A., Pflug, L., Gisin, N., Breguet, J., Vurpillot, S. (1994) Low-Coherence Deformation Sensors for the Monitoring of Civil Engineering Structures, Sensor & Actuators A, 44(2), pp.125-130. https://doi.org/10.1016/0924-4247(94)00797-7
  7. Kim, H.W., Kim, J.M., Choi, S.Y., Park, S.Y., Lee, H.W. (2015) Long Term Monitoring of Prestressing Tension Force in Post-Tension UHPC Bridge using Fiber Optical FBG Sensor, J. Comput. Struct. Eng. Inst. Korea, 28(6), pp.699-706. https://doi.org/10.7734/COSEIK.2015.28.6.699
  8. Kim, Y.B. (2010) A Basic Study on Development of the Hetero-core Type Fiber Optic Pressure Sensor, Trans. Korea Fluid Power Syst. Soc., 7(2), pp.1-6.
  9. Ko, J.M., Ni, Y.Q. (2005) Technology Developments in Structural Health Monitoring of Large-Scale Bridges, Eng. Struct. 27(12), pp.1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021
  10. Lee, J.H. (2015) Prestressed Concrete Strength Design and Limit State Design, Dong Myeong Publisher, pp.6-11.
  11. Lee, S.C., Choi, S.Y., Shin, K.J., Kim, J.M., Lee, H.W. (2015) Measurement of Transfer Length for a Seven-Wire Strand with FBG Sensors, J. Comput. Struct. Eng. Inst. Korea, 28(6), pp.707-714. https://doi.org/10.7734/COSEIK.2015.28.6.707
  12. Maaskant, R., Alavie, T., Measures, R.M., Tadros, G., Rizkalla, S.H., Guha-Thakurta, A. (1997) Fiber-Optic Bragg Grating Sensors for Bridge Monitoring, Cement & Concr. Compos. 19(1), pp.21-33. https://doi.org/10.1016/S0958-9465(96)00040-6
  13. Measures, R.M., Alavie, A.T., Maaskant, R., Ohn, M., Karr, S., Huang, S. (1994) Bragg Grating Structural Sensing System for Bridge Monitoring, SPIE, 2294, pp.53-60.
  14. Michiko, N., Kazuhiro, W. (2016) Unconstrained Pulse Pressure Sensing for Health Management based on a Hetero-Core Fiber Optic Sensor, Biomed. Opt. Express. 7(9), pp.3675-3685. https://doi.org/10.1364/BOE.7.003675
  15. Park, E.T., Choi, K.S., Kim, T.Y., Lee, H.W. (2018) Fundamental Experiment to Verify the Resolution of Hetero-core Fiber Optic Sensor for the Prestress Measurement. J. Comput. Struct. Eng. Inst. Korea, 31(5), pp.259-266. https://doi.org/10.7734/COSEIK.2018.31.5.259
  16. Sumitro, S., Hida, K., Diouron, T.L. (2003) Structural Health Monitoring Paradigm for Concrete Structures, 28th Conference on Our World in Concrete & Structures, pp.525-532.
  17. Wang, M.L., Chen, Z. (2000) Magneto-Elastic Permeability Measurement for Stress Monitoring in Steel Tendons and Cables. Proc. SPIE 7th Annual Symposium on Smart Structures and Materials, Health Monitoring of the Highway Transportation Infrastructure, 3995, pp.492-500.