Abstract
Previously, agar obtained from Gelidum sp. has a small molecular weight and has the disadvantage of inherent viscosity properties and poor functionality as a dietary fiber. In order to improve aforementioned disadvantages, agar having a fluidity that can be added to food at a higher concentration that a powder agar having a gelling property at low concertation was manufactured. In addition, the anti-inflammatory activity of agar hydrolysates was evaluated to confirm their potential as a functional material. As a result, agar hydrolysates significantly reduced NO levels secreted by LPS-activated macrophages and inhibited the expression of iNOS and COX-2, which are inflammatory mediators that regulates NO secretion in macrophages. Furthermore, in in vivo zebrafish embryos model results demonstrated significant reduction of LPS induced NO production after the treatment of agar hydrolysate hydrolyzed for 360 min. In addition, ROS production and cell death by stresses were also reduced in LPS-exposed embryos after the treatment of agar hydrolysis product hydrolyzed for 360 min. Taken together, agar hydrolysate hydrolyzed for 360 min can be easily added into food due to their fluidity and used as a food ingredient that inhibits inflammation due to their anti-inflammatory property.