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A NON-RECURSIVE APPROACH TO

NEVANLINNA-PICK INTERPOLATION PROBLEM

Jeongook Kim

Abstract. A solution for Nevanlinna-Pick interpolation problem
with low complexity is constructed via non-recursive method. More
precisely, a stable rational function satifying the given interpolation
data in the complex right half plane is found by solving a homoge-
neous interpolation problem related to a minial interpolation prob-
lem for the given data in the right half plane together with its
mirror-image data.

1. Introduction

A minimal interpolation problem for scalar rational functions is the
following: given distinct points z1, · · · , zn in the complex plain C and
given complex numbers {wij}

µj
i=1

n

j=1, find a rational function y(z) in the

form of

y(z) :=
n(z)

d(z)
, gcd(n, d) = 1(1.1)

such that

y(i−1)(zj) = wij , i = 1, · · · , µj , j = 1, · · · , n(1.2)

and has the minimal complexity, where gcd means the greatest common
divisor of polynomials. As a measure of the complexity of a scalar ratio-
nal function, we use the McMillan degree. The McMillan degree of y(z)
in (1.1) is defined by

δ(y) := max {deg n(z), deg d(z)}.
Some special cases of this (minimal) interpolation problem were studied
by Belevich([6]) and Donoghue([7]) and the general case was understood
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by Antoulas and Anderson([1]). In the latter approach, the Loewner
matrix is a key notion. For simplicity, if we assume, in (1.2), µi = 1,
i = 1, · · · , n and n = 2m + 1 for some nonnegative integer m, then the
associated Loewner matrix is given by

L :=
[
wm+1+i−wj

zm+1+i−zj

]
1≤i≤m, 1≤j≤m+1

.(1.3)

Let L̄ be an (n− q − 1)× (q + 1) Loewner matrix defined by

L̄ = [
wq+1+i − wj
zq+1+i − zj

]1≤i≤n−q−1, 1≤j≤q+1,(1.4)

where q = rank L. Due to [1], it is known that r × l Loewner matrix
constructed from the same data for L with r ≥ q, l ≥ q has the same
rank. Thus,

rankL̄ = q.(1.5)

Let c := [c1, · · · , cq+1]T be a (q+1)-dimensional nonzero vector satisfying

L̄c = 0(1.6)

equivalently

q+1∑
j=1

cj
wk − wj
zk − zj

= 0, k = q + 2, q + 3, · · · , n.(1.7)

Let

d̄(z) :=

q+1∑
j=1

cj

q+1∏
i=1, i 6=j

(z − zi)(1.8)

n̄(z) :=

q+1∑
j=1

cjwj

q+1∏
i=1 ,i 6=j

(z − zi)(1.9)

and f̄(z) be a rational function satisfying

f̄(z)d̄(z) = n̄(z).(1.10)

Now we are ready to state the main result of [1] :

Theorem 1.1. Let L be an m × (m + 1) Loewner matrix given by
(1.3) and d̄(z) and f̄(z) be given as in (1.8)-(1.10).
(a) If d̄(z) has no zeros at zj , j = 1, · · · , n, then the minimal possible
McMillan degree for the solutions of (1.1) is rank L and f̄ is the unique
such solution.
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(b) Otherwise, n− rank L is the minimal possible McMillan degree and
there are more than one solution of McMillan degree n− rank L.

For the proof, readers are referred to [1] or [9]. In [9], a generalization
of Theorem 1.1 to a tangential interpolation problem for rational matrix
functions is considered. But, this classical approach to rational matrix
functions seems to give very limited results. There are two main diffi-
culties in extending [1] directly to tangential interpolation problems for
rational matrix functions: one is, unlike the scalar case, the McMillan
degree of a function does not coincide with the rank of the Loewner ma-
trix of the interpolation data generated by that specific function. The
second main difficulty for rational matrix interpolation problem is the
interpolating data cannot be freely rearranged to change the size of the
Loewner matrix as we did in generating L̄ from L in (1.3) and (1.4).

This paper is consisted of two sections other than this introductory
one. The next section understands Theorem 1.1 from a new perspective
so that the result is stated without Loewner matrix and the foremen-
tioned two difficulties in extending Theorem 1.1 to rational matrix fuc-
tions can be avoided. The result is related to a matrix polynomial with
certain null pair and column reduced ( at infinity). The third section
is about another type of interpolation problem, called Nevanlinna Pick
interpolation problem where one is seeking a rational function interpo-
lating a given array of points in the complex right half plane (RHP) and
stable in the RHP. Here the stability is definded as the boundedness in
the RHP. All the solutions of this problem were parametrized in [10] by
using recursive algorithm. Antoulas and Anderson of [2] tried to solve
this problem via a non-recursive method. But, the solution by [2] is
misleading and a counter-example was presented in [5]. The main con-
tribution of this paper is to consturct a Nevanlinna Pick solution with
sufficiently small McMillan degree by a non-recursive method. More
precisely, the author develops a solution of a homegeneous interpolation
problem induced by a minimal interpolation problem for the given data
in RHP and together with its associated so called mirror-image array
and uses it as a main tool in the last section.

2. Minimal solutions and homogenous interpolation

The aim of this section is to understand Theorem 1.1 from another
point of view. Suppose the interpolation data is given by (1.2) and the
Loewner matrix in (1.3) has rank q. To construct a solution of McMillan
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degree n− q, we introduce L̂, (q− 1)× (n− q+ 1) Loewner matrix given
by

L̂ =
[ωn−q+1+i − ωj
zn−q+1+i − zj

]
1≤i≤q−1, 1≤j≤n−q+1

.(2.1)

Since the dimension of the null space of L̂ is at least 2, we can choose a
(n− q + 1)-dimensional vector ĉ satisfying

L̂ĉ = 0.(2.2)

and

d̂(z) :=

n−q+1∑
j=1

ĉj

n−q+1∏
i=1, i 6=j

(z − zi)(2.3)

has no zeroes at zj , j = 1, · · · , n, where

ĉ := [ĉ1, · · · , ĉn−q+1]T .

Let

n̂(z) :=

n−q+1∑
j=1

ĉjwj

n−q+1∏
i=1 ,i 6=j

(z − zi)(2.4)

and

f̂(z) :=
n̂(z, ĉ)

d̂(z, ĉ)
.

Here we note that wheather f̄(z) in (1.10) is a solution of (1.2) or not,

we can find such n̂(z), d̂(z) satisfying

d̄(z)n̂(z)− n̄(z)d̂(z) 6= 0.(2.5)

By Theorem 1.1 (b) and by its construction, the McMillan degree of f̂
has to be n− q. Since the choice of ĉ is not unique, there are more than
one solutions of degree n− q.

Let

Aζ :=


z1 0

. . .
. . .

0 zn

 , B :=


1 −ω1
...

...
...

...
1 −ωn

(2.6)

Then (Aζ , B) is a full range pair.
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Theorem 2.1. Let

Θ̂(z) :=

[
n̂(z) n̄(z)

d̂(z) d̄(z)

]
,(2.7)

where n̄(z), d̄(z), n̂(z)d̂(z) are polynomials given by (1.8), (1.9), (2.3)
and (2.4). Then,

Θ̂(z) has (Aζ , B) as its σ − null pair(2.8)

Θ̂(z) is column reduced ,(2.9)

where σ = {zi}ni=1.

Proof. Remember that the polynomials of the components of Θ̂(z)
are constructed so that

(a)ωid̄(zi) = n̄(zi), (b)ωid̂(zi) = n̂(zi), i = 1, · · · , n(2.10)

and

(a) the index of

[
n̄(z)
d̄(z)

]
≤ q, (b) the index of

[
n̂(z)

d̂(z)

]
≤ n− q,(2.11)

where the index of a vector polynomial means the highest polynomial de-
grees of the components. It is straight forward from (2.10) that (Aζ , B)

is a corestriction of a left null pair of Θ̂(z).
Now, to prove (2.9), it is enough to show

deg det Θ̂(z) = the sum of the column indices.(2.12)

Then, (2.12) also implies that (Aζ , B) is in fact precisely a left null pair

for Θ̂(z). From (2.11), deg detΘ̂(z) ≤ n, but the condition (2.5) and

(2.10) imply that the nonzero polynomial det Θ̂(z) has at least n zeroes.
Hence,

det Θ̃(z) = n(2.13)

and, in turn,

the index of

[
n̄(z)
d̄(z)

]
= q(2.14)

the index of

[
n̂(z)

d̂(z)

]
= n− q.(2.15)

This completes the proof.
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It is known that the column indices of a column reduced matrix poly-
nomial, α1 ≥ α2, are the controllability indices of its (left) null pair.
Hence, we have

rank L = q = α2,(2.16)

For the definition of a controllability indices, a full range pair and σ-
null pair, the readers are referred to [4]. The notion of a controllability
indices of a full range pair (Aζ , B) does not involve the related Loewner
matrix.

The next theorem restates Theorem 1.1 without using the notion of
Loewner matrix which is the main barrier in extending the results of [1]
to rational matrix functions.

Theorem 2.2. Let n × n matrix Aζ , n × 2 matrix B be given by
(2.6) and

Θ(z) :=

[
Θ11 Θ12

Θ21 Θ22

]
be any 2×2 matrix polynomial satisfying (2.8) and (2.9) with the column
indices in decreasing order, α1 > α2.
(a) If Θ22(zi) 6= 0 for i = 1, · · · , n, then the minimal possible McMillan

degree of the solutions of (1.2) is α2 and f(z) := Θ12(z)
Θ22(z) is the unique

solution of McMillan degree α2.
(b) Otherwise, α1 is the minimal McMillan degree of solutions of (1.2)
and there are more than one solutions of McMillan degree α1.

Proof. Since Θ̂(z) given by (2.7) and Θ(z) have the same null pair
and both are column reduced, there exists a 2 × 2 unimodular matrix

V (z) :=

[
v11(z) v12(z)
v21(z) v22(z)

]
satisfying Θ(z) = Θ̂(z)V (z). By an unimod-

ular matrix, one means a matrix polynomial whose determinant is a
nonzero constant. By the predictable degree property of a column re-
duced matrix polynomial (see [8]) and by (2.14)(2.15),

the column index of

[
Θ12

Θ22

]
≥ q + deg v22, unless v22 6= 0(2.17)

the column index of

[
Θ12

Θ22

]
≥ (n− q) + deg v12, unless v12 6= 0,(2.18)

since α2 = q, α1 = n − α2 = n − q. Because the column index of[
Θ12

Θ22

]
= α2 = q and (n − q) > q in this case, (2.18) forces v12 = 0 and
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(2.17) and the unimodularity of V (z) forces v22 is a nonzero constant c
and v11 is a nonzero constant ĉ. By plugging v22 = c, v12 = 0 , we have

n̄(z) =
1

c
Θ12(z),(2.19)

d̄(z) =
1

c
Θ22(z).(2.20)

Upon substituting (2.19)(2.20) in Theorem 2.1, the proof is completed.

The next Corollary follows from the proof of Theorem 2.2.

Corollary 2.3. If Θ1(z) and Θ2(z) are 2×2 matrix polynomials hav-
ing the same left null pair and column reduced with decreasing column
indices i1 > i2. Then the second columns of Θ1(z) and Θ2(z) are the
same up to a nonzero constant multiplication.

3. A non-recursive approach to Nevanlinna-Pick problem

A different sort of interpolation problem arsing in systems theory
which is called Nevanlinna-Pick interpolation problem is the following.
For given {z1, z2, ...., zm+1} be an (m + 1) distinct points in the RHP
and {ω1, ω2, ...., ωm+1} be an (m+1) tuple of nonzero complex numbers,
one is asked to find a rational function y satisfying

y(zi) = ωi, for i = 1, 2, ....,m+ 1(3.1)

and

|y(z)| ≤ γ, for z ∈ RHP,(3.2)

where γ > 0 is some preassigned tolerance level. Pick showed that
solutions exist if and only if the so-called Pick matrix

Λ =

[
γ2 − ωiω̄j
zi + z̄j

]
1≤i,j≤m+1

(3.3)

is positive definite.
Here we introduce the Nevanlinna-Pick algorithm which is due to

Nevanlinna. It is recursive and described as follows (The unit disk in
Nevanlinna’s algorithm is replaced by the right half plane here). With

yk(z) =
nk(z)

dk(z)
, k = 0, 1, . . . , m,m+ 1,(3.4)
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consider for k = 1, . . . , m,m+ 1 the relationship[
nk−1(z)
γdk−1(z)

]
= Θk(z)

[
nk(z)
γdk(z)

]
,(3.5)

where

Θk(z) =

 1
yk−1
k
γ

[yk−1
k ]∗

γ 1

z − zk 0

0 z + z̄k

 ,(3.6)

and where yk−1
k := yk−1(zk), y

0(z) = y(z). When Λ in (3.3) is positive
definite, due to Nevanlinna, all the solutions of (3.1) and (3.2) can be
obtained as the form of y0(z) through the recursive process given by
(3.5) and (3.6) upon choosing ym+1(z) satisfying (3.2) with ym+1(z) in
place of y(z). Nevanlinna obtained a solution yNP as the result of the
above recursive process upon choosing ym+1(z) = 0 in (3.5). Then, it is
easily seen

δ(yNP ) ≤ m.(3.7)

Now, to understand the Nevanlinna’s process through non-recursive
approach, the author introduces the matrix Θ̃(z) defined by

Θ1(z)Θ2(z) . . .Θm+1(z) := Θ̃(z) :=

[
Θ̃11(z) Θ̃12(z)

Θ̃21(z) Θ̃22(z)

]
.(3.8)

The following Lemma is a restatement of the Nevanlinna’s results in
terms of Θ̃(z).

Lemma 3.1. y0(z) defined by (3.4) is a solution of (3.1) and (3.2) if
and only if [

n0(z)
γd0(z)

]
= Θ̃(z)

[
nm+1(z)
γdm+1(z)

]
(3.9)

where ym+1(z) given by (3.4) satiesfies the condition (3.2) with ym+1(z)
in place of y(z). Moreover,

yNP (z) = γ
Θ̃12(z)

Θ̃22(z)
.(3.10)

The next lemma is about its symmetric property of Θ̃(z).

Lemma 3.2. Θ̃(z) given by (3.8) satisfies the following property:

Θ̃(−z̄) = (−1)m+1 J Θ̃(z)J,(3.11)
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where

J =

[
0 1
1 0

]
and Θ̃(z) is the matrix obtained from Θ̃(z) by taking the complex con-

jugate of each component of Θ̃(z).

Proof. It is enough to show

Θk(−z̄) = − J Θk(z)J(3.12)

for each k = 1, 2, . . . ,m+ 1. Since

Θk(z) = YkDk(z)(3.13)

with

Yk :=

 1
yk−1
k
γ

[yk−1
k ]∗

γ 1

 and Dk(z) :=

z − zk 0

0 z + z̄k

 ,(3.14)

(3.12) is directly obtained upon noticing Dk(−z̄) = −JDk(z)J and
Yk J = J Yk, which are straightfoward from (3.14).

Theorem 3.3. Let

Θ(z) :=

[
Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
,(3.15)

with Θi1(z) = Θ̃i1 and Θi2(z) = 1
z+z∗m+1

Θ̃i2(z) for i = 1, 2 . Then,

(a) Θ(z) has (

Aζ 0 0
0 zm+1 0
0 0 −A∗ζ

 ,
B̂
B̃

) as its (left) null pair

(b) Θ(z) is column reduced with the column indices α1 = m + 1,
α2 = m,
where

B̂ =

[
1 1 . . . 1 1
−ω1

γ −ω2
γ . . . −ωm

γ −ωm+1

γ

]T
,

B̃ :=

[
1 1 . . . 1
− γ
ω∗
1
− γ
ω∗
2

. . . − γ
ω∗
m

]T
and Aζ is given by (2.6) with m in place of n, and αj is the jth column
index of Θ(z) .
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Proof. To prove (a), first we show that for k = 1, 2, . . . ,m+ 1,[
1 −ωk

γ

]
(Θ1Θ2 · · ·Θk)(zk) = 0(3.16)

Since, by the definition of Θk(z) in (3.13), the first column of
(Θ1Θ2 · · ·Θk)(zk) is zero and hence the first component of (3.16) is zero,
and

the 2nd column of (Θ1Θ2 · · ·Θk)(zk)

= (Θ1Θ2 · · ·Θk−1)(zk)

[
yk−1
k
γ

1

]
(zk + z̄k)

= (Θ1Θ2 · · ·Θk−1)(zk)

[
nk−1(zk)
γdk−1(zk)

]
(zk + z̄k)

γdk−1(zk)

=

[
n0(zk)
γd0(zk)

]
(zk + z̄k)

γdk−1(zk)

=

[
y0(zk)
γ

1

]
(zk + z̄k)d

0(zk)

dk−1(zk)
.

Noting that y0(zk) = ωk, we find the 2nd column of (Θ1Θ2 · · ·Θk)(zk)

multiplied by
[
1 −ωk

γ

]
on its left side is simply zero. Hence, we have[

1 −ωk
γ

]
Θ(zk) = 0, k = 1, 2, · · · , m+ 1.(3.17)

Here we note that dk−1(zk) 6= 0 by its construction for 1 ≤ k ≤ m+ 1.
Now we show[

1 − γ
ω∗
k

]
Θ(−z∗k) = 0, k = 1, 2, · · · ,m.(3.18)

For k = 1, 2, · · · ,m, since the second column of Θk(−z∗k) is zero, so is
the second column of (Θ1Θ2 · · ·Θk)(−z∗k) and hence so is the second
component of (3.18). By applying (3.12), we have

the 1st column of (Θ1Θ2 · · ·Θk)(−z∗k)

= the 1st column of (−1)kJ (Θ1Θ2 · · ·Θk)(zk) J

= the 2nd column of (−1)kJ (Θ1Θ2 · · ·Θk)(zk)

= (−1)kJ (Θ1Θ2 · · ·Θk−1)(zk)

[
yk−1
k
γ

1

]
(zk + z∗k).(3.19)
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In the previous page, the part under the big overline in (3.19) is reduced

to a constant multiple of

[ωk
γ

1

]
. Upon multiplying by J on the left, (3.19)

is reduced to a constant multiple of

[
1
ωk

∗

γ

]
. Thus,[

1 − γ
ωk

∗
]

(Θ1Θ2 · · ·Θk)(−z̄k) = 0

and, in turn, (3.18) is proved. By (3.17) and (3.18), Θ(z) has at least
(2m + 1) zeros. But, the fact that α1 ≤ m , α2 ≤ m + 1 by the
construction forces deg (detΘ(z)) ≤ 2m+ 1 which means Θ(z) can have
no more zeros. This forces (a) and deg(detΘ(z)) = 2m + 1 and in turn
α1 = m+ 1, α2 = m. Thus, Θ(z) is column reduced.

To expolit Theorem 3.3, we assume the interpolation data is given by

y(zi) =
ωi
γ
, 1 ≤ i ≤ m+ 1(3.20)

y(zm+1+i) =
γ

ω∗i
:= ωm+1+i, i = 1, · · · ,m(3.21)

with the symmetric property that zm+1+i = −z∗i , where zi ∈ RHP and
ωi is nonzero for 1 ≤ i ≤ m + 1. Then, the Loewner matrix L in (1.3)
and Λ in (3.3) have the following relationship:

[Im 0] Λ = DL,(3.22)

where D is an m×m diagonal matrix having −γw∗i as its (i, i)- compo-
nent. This suggests a connection between the Nevanlinna-Pick problem
and the minimal McMillan degree interpolation problem with symmetric
data.

Now we suppose Λ is positive definite. Then, by (3.22), rankL = m.
The next theorem recovers yNP in a non-recursive way.

Theorem 3.4. Given are the conditions (3.1) and (3.2) with positive
definite Λ in (3.3). Then,

yNP = γ
n̄(z)

d̄(z)
,(3.23)

where n̄(z), d̄(z) are constructed as in (1.8) and (1.9) with L̄ = L, q = m
for the given interpolation data (3.20) and (3.21).

Proof. For the given interpolation data (3.20) and (3.21), we con-

struct L, n̄(z), d̄(z) and n̂(z), d̂(z) according to (1.3), (1.8), (1.9), (2.3)

and (2.4) . Due to (3.22) rankL = m. Then, Θ̂(z) given by (2.7) and
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Θ(z) by (3.15) both are column reduced with the same left null pair

(

Aζ 0 0
0 zm+1 0
0 0 −A∗ζ

 ,
B̂
B̃

) with decreasing column indices m+1 and

m. By Corollary 2.3, [
n̄(z)
d̄(z)

]
= α

[
Θ12(z)
Θ22(z)

]
,

for some nonzero constant α. By (3.10) and the relationship

[
Θ̃12

Θ̃22

]
=[

Θ12

Θ22

]
(z + z∗m+1),

yNP = γ
Θ12

Θ22
= γ

n̄(z)

d̄(z)

Corollary 3.5. The followings are equivalent.
(a) δ(yNP ) = m
(b) 1

γ yNP is a unique minimal solution for (3.20) and (3.21)

(c) d̄(z) in Theorem 3.4 has no zeroes at {−z∗i | i = 1, · · · ,m}.

In [2], it is asserted (in the equivalent context where the right half
plane is replaced by the unit disk) that, if the Pick matrix Λ is positive
definite, then a minimal degree solution of (3.20) and (3.21) automat-
ically is analytic with modulus at most γ on RHP and coincides with
1
γ yNP . But, the following example shows that it is not true.

Example 3.6. Let z1 = 1/2, z2 = 1, ω1 = 1/2, ω2 = 1/2, γ = 1.
Then, the Nevanlinna-Pick interpolation conditions are

y(1/2) = 1/2, y(1) = 1/2(3.24)

while the minimal degree interpolation problem with symmetric data
involves the extra interpoaltion condition

y(−1/2) = 2.(3.25)

For this case one easily sees that yNP constructed by (3.5) is the costant
function yNP = 1/2 which does not meet the extra interpolation condi-

tion (3.25). Since L =
[
−3/2 −1

]
, if we choose

[
c1

c2

]
=

[
2
−3

]
in kerL,

then by (1.8) (1.9), d̄(z) = −(z+ 1/2) and n̄(z) = −1/2(z+ 1/2) so that
(3.23) holds. On the other hand, the minimal McMillan degree of the
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solutions satisfying (3.24) and (3.25) is 3− rankL = 2 by Theorem 1.1,
since d̄(z) has a zero at −1

2 . So, for this problem, any minimal solution
for (3.24) and (3.25) cannot be yNP whose McMilla degree is 0.
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