DOI QR코드

DOI QR Code

Pseudomonas syringae pv. tomato DC3000 Improves Escherichia coli O157:H7 Survival in Tomato Plants

  • Namgung, Min (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Lim, Yeon-Jeong (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Kang, Min Kyu (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University) ;
  • Oh, Chang-Sik (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Park, Duck Hwan (Applied Biology Program, Division of Bioresource Sciences, Kangwon National University)
  • Received : 2019.07.29
  • Accepted : 2019.10.04
  • Published : 2019.12.28

Abstract

Recently, outbreaks of food-borne diseases linked to fresh produce have been an emerging public health concern worldwide. Previous research has shown that when human pathogens co-exist with plant pathogens, they have improved growth and survival rates. In this study, we have assessed whether Escherichia coli O157:H7 benefits from the existence of a phytopathogenic bacterium and the underlying mechanisms were further investigated. When Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and E. coli O157:H7 were co-inoculated by either dipping or infiltration methods, the populations of E. coli O157:H7 increased; however, no effect was observed when type three secretion system (T3SS) mutants were used instead, suggesting that E. coli O157:H7 benefits from the presence of Pst DC3000. In addition, this study confirmed that the E. coli O157:H7 populations increased when they occupied the tomato leaf intercellular space; this colonization of the interior of the leaves was possible due to the suppression of the PAMP-triggered immunity (PTI) by Pst DC3000, in particular with the AvrPto effector. In conclusion, our data support a plausible model that E. coli O157:H7 benefits from the presence of Pst DC3000 via AvrPto suppression of the PTI resistance.

Keywords

References

  1. Barak JD, Schroeder BK. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu. Rev. Phytopathol. 50: 241-266. https://doi.org/10.1146/annurev-phyto-081211-172936
  2. Watanabe Y, Ozasa K, Mermin JH, Griffin PM, Masuda K, Imashuku S, et al. 1999. Factory outbreak of Escherichia coli O157:H7 infection in Japan. Emerg. Infect. Dis. 5: 424-428. https://doi.org/10.3201/eid0503.990313
  3. Doyle MP, Erickson MC. 2008. Summer meeting 2007 - the problems with fresh produce: an overview. J. Appl. Microbiol. 105: 317-330. https://doi.org/10.1111/j.1365-2672.2008.03746.x
  4. Melotto M, Panchal S, Roy D. 2014. Plant innate immunity against human bacterial pathogens. Front Microbiol. 5: doi: 10.3389/fmicb.2014.00411.
  5. Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6: e27340. https://doi.org/10.1371/journal.pone.0027340
  6. Roy D, Ranchal W, Rosa BA, Melotto M. 2013. Escherichia coli O157:H7 induces plant immunity than Salmonella enterica Typhimurium SL1344. Phyhtopathology 103: 326-332. https://doi.org/10.1094/PHYTO-09-12-0230-FI
  7. Seo S, Matthews KR. 2012. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl. Environ. Microbiol. 78: 5882-5889. https://doi.org/10.1128/AEM.01095-12
  8. Meng F, Altier C, Martin GB. 2014. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ. Microbiol. 15: 2418-2430. https://doi.org/10.1111/1462-2920.12113
  9. Simko I, Zhou Y, Brandl M. 2015. Downy mildew disease promotes the colonization of romain lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiol. 15: 19. doi: 10.1186/s12866-015-0360-5.
  10. Nguyen HP, Chakravarthy S, Velasquez AC, McLane HL, Zeng L, Nakayashiki H, et al. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant Microbe Interact. 23: 991-999. https://doi.org/10.1094/MPMI-23-8-0991
  11. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12: 2385-2397. https://doi.org/10.1111/j.1462-2920.2010.02297.x
  12. Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. 2013. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology 103: 333-340. https://doi.org/10.1094/PHYTO-08-12-0209-FI
  13. Solomon EB, Pang HJ, Matthews KR. 2003. Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66: 2198- 2202. https://doi.org/10.4315/0362-028X-66.12.2198
  14. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, et al. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75: 6076-6086. https://doi.org/10.1128/AEM.01084-09
  15. Thilmony R, Underwood W, He SY. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46: 34-53. https://doi.org/10.1111/j.1365-313X.2006.02725.x
  16. Hauck P, Thilmony R, He SY. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100: 8577-8582. https://doi.org/10.1073/pnas.1431173100
  17. Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
  18. Potnis N, SotoArias JP, Cowles KN, van Bruggen AH, Jones JB, Barak JD. 2014. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80: 3173-3180. https://doi.org/10.1128/AEM.00345-14
  19. Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Martin GB. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22: 60-69. https://doi.org/10.1093/emboj/cdg006
  20. Chang JH, Rathjen JP, Bernal AJ, Staskawicz BJ, Michelmore RW. 2000. AvrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf. Mol. Plant Microbe Interact. 13: 568-571. https://doi.org/10.1094/MPMI.2000.13.5.568
  21. Shan L, Thara VK, Martin GB, Zhou JM, Tang X. 2000. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12: 2323-2338. https://doi.org/10.2307/3871232
  22. Wei H-L, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, et al. 2015. Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe 17: 752-762. https://doi.org/10.1016/j.chom.2015.05.007
  23. Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, et al. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27. https://doi.org/10.1016/j.chom.2008.05.017
  24. Xin X, He SY. 2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51: 473-498. https://doi.org/10.1146/annurev-phyto-082712-102321
  25. Almeida DP, Huber DJ. 1999. Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol. Plantarum 105: 506-512. https://doi.org/10.1034/j.1399-3054.1999.105316.x