DOI QR코드

DOI QR Code

Effect of Ionomer Content on the Anode Catalyst Layers of PEM Fuel Cells

고분자 전해질 연료전지용 수소극 촉매층의 이오노머 함량 영향

  • PAK, BEOMJUN (Fuel Cell laboratory, Korea Institute of Energy Research (KIER)) ;
  • LEE, SEONHO (Fuel Cell laboratory, Korea Institute of Energy Research (KIER)) ;
  • WOO, SEUNGHEE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER)) ;
  • PARK, SEOK-HEE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER)) ;
  • JUNG, NAMGEE (Energy Science and Technology, Chungnam National University) ;
  • YIM, SUNG-DAE (Fuel Cell laboratory, Korea Institute of Energy Research (KIER))
  • 박범준 (한국에너지기술 연구원 연료전지 연구실) ;
  • 이선호 (한국에너지기술 연구원 연료전지 연구실) ;
  • 우승희 (한국에너지기술 연구원 연료전지 연구실) ;
  • 박석희 (한국에너지기술 연구원 연료전지 연구실) ;
  • 정남기 (충남대학교 에너지과학기술대학원) ;
  • 임성대 (한국에너지기술 연구원 연료전지 연구실)
  • Received : 2019.10.08
  • Accepted : 2019.12.30
  • Published : 2019.12.30

Abstract

For the low-Pt electrodes for polymer electrolyte fuel cells (PEMFCs), the optimization of ionomer content for anode catalyst layers was carried out. A commercial catalyst of 20 wt.% Pt/C was used instead of 50 wt.% Pt/C which is commonly used for PEMFCs. The ionomer content varies from 0.6 to 1.2 based on ionomer to carbon ratio (I/C) and the catalyst layer is formed over the electrolyte by the ultrasonic spray process. Evaluation of the prepared MEA in the unit cell showed that the optimal ionomer content of the air electrode was 0.8 on the I/C basis, while the hydrogen electrode was optimal at the relatively high ionomer content of 1.0. In addition, a large difference in cell performance was observed when the ionomer content of the hydrogen electrode was changed. Increasing the ionomer content from 0.6 to 1.0 by I/C in a hydrogen electrode with 0.05 mg/㎠ platinum loading resulted in more than double cell performance improvements on a 0.6 V. Through the analysis of various electrochemical properties in the single cell, it was assumed that the change in ionomer content of the hydrogen electrode affects the water flow between the hydrogen and air electrodes bounded by the membrane in the cell, which affects the overall performance of the cell. A more specific study will be carried out to understand the water flow mechanism in the future, and this study will show that the optimization process of hydrogen electrode can also be a very important cell design variable for the low-Pt and high-performance MEA.

Keywords

References

  1. B. G. Pollet, "The Use of Power Ultrasound for the Production of PEMFC and PEMWE Catalysts and Low-Pt Loading and High-Performing Electrodes", Catalysts, Vol. 9, No. 3, 2019, pp. 246-263, doi: https://doi.org/10.3390/catal9030246.
  2. B. Millington, V. Whipple and B. G. Pollet, "A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique" Journal of Power Sources, Vol. 196, No. 20, 2011, pp. 8500-8508, doi: https://doi.org/10.1016/j.jpowsour.2011.06.024.
  3. T. H. Huang, H. L. Shen, T. C. Jao, F. B. Weng, and A. Su, "Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine", International Journal of Hydrogen Energy, Vol. 37, No. 18, 2012, pp. 13872-13879, doi: https://doi.org/10.1016/j.ijhydene.2012.04.108.
  4. H. A. Gasteiger, J. E. Panels, and S. G. Yan, "Dependence of PEM fuel cell performance on catalyst loading", Journal of Power Sources, Vol. 127, No. 1-2, 2004, pp. 162-171, doi: https://doi.org/10.1016/j.jpowsour.2003.09.013.
  5. H. N. Su, S. J. Liao, T. Shu, and H. L. Gao, "Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique", Journal of Power Sources, Vol. 195, No. 3, 2010, pp. 756-761, doi: https://doi.org/10.1016/j.jpowsour.2009.08.037.
  6. K. C. Neyerlin, W. Gu, J. Jorne, and H. A. Gasteiger, "Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions", Journal of The Electrochemical Society, Vol. 154, No. 7, 2007, pp. B631-B635, doi: https://doi.org/10.1149/1.2733987.
  7. N. Nonoyama, S. Okazaki, A. Z. Weber, Y. Ikogi, and T. Yoshida, "Analysis of Oxygen-Transport Diffusion Resistance in Proton-Exchange-Membrane Fuel Cells", Journal of The Electrochemical Society, Vol. 158, No. 4, 2011, pp. B416-B423, doi: https://doi.org/10.1149/1.3546038.
  8. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3693-3701, doi: https://doi.org/10.1016/S0013-4686(98)00127-3.
  9. C. Y. Ahn, J. Y. Cheon, S. H. Joo, and J. Kim, "Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells", Journal of Power Sources, Vol. 222, 2013, pp. 477-482, doi: https://doi.org/10.1016/j.jpowsour.2012.09.012.
  10. K. H. Kim, K. Y. Lee, S. Y. Lee, E. A. Cho, T. H. Lim, H. J. Kim, S. P. Yoon, S. H. Kim, T. W. Lim, and J. H. Jang, "The effects of relative humidity on the performances of PEMFC MEAs with various Nafion$^{(R)}$ ionomer contents", International Journal of Hydrogen Energy, Vol. 35, No. 23, 2010, pp. 13104-13110, doi: https://doi.org/10.1016/j.ijhydene.2010.04.082.
  11. C. Wang, X. Cheng, X. Yan, S. Shen, C. Ke, G. Wei, and J. Zhang, "Respective Influence of Ionomer Content on Local and Bulk Oxygen Transport Resistance in the Catalyst Layer of PEMFCs with Low Pt Loading", Journal of The Electrochemical Society, Vol. 166, No. 4, 2019, pp. F239-F245, doi: https://doi.org/10.1149/2.0401904jes.
  12. K. Y. Ahn, C. N. Yang, and S. Lee, "A Study on Electrochemical Characteristics of MEA with Nafion Ionomer Content in Catalyst Layer for PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, 2010, No. 6, pp. 540-546.
  13. H. S. Jang, and E. A. Cho, "Effects of Additives and Hot-Pressing Conditions on the Surface and Performance of MEAs for PEMFCs", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 5, 2010, pp. 398-404.
  14. K. S. Lee, J. S. Lee, N. H. Kwon, and I. C. Hwang, "Development of High Performance MEA by Decal Method for PEM Fuel Cell", Vol. 22, No. 5, 2011, pp. 585-591. https://doi.org/10.7316/KHNES.2011.22.5.585
  15. S. M. Andersen, and L. Grahl-Madsen, "Interface contribution to the electrode performance of proton exchange membrane fuel cells - Impact of the ionomer", International Journal of Hydrogen Energy, Vol. 41, No. 3, 2016, pp. 1892-1901, doi: https://doi.org/10.1016/j.ijhydene.2015.11.101.
  16. K. H. Kim, K. Y. Lee, H. J. Kim, E. A. Cho, S. Y. Lee, T. H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang, "The effects of Nafion$^{(R)}$ ionomer content in PEMFC MEAs prepared by a catalystcoated membrane (CCM) spraying method", International Journal of Hydrogen Energy, Vol. 35, No. 5, 2010, pp. 2119-2126, doi: https://doi.org/10.1016/j.ijhydene.2009.11.058.
  17. H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, "Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology", Journal of Power Sources, Vol. 283, 2015, pp. 84-94, doi: https://doi.org/10.1016/j.jpowsour.2015.02.101.
  18. S. Holdcroft, "Fuel Cell Catalyst Layers: A Polymer Science Perspective", Journal of American Chemical Society, Vol. 26, 2014, pp. 381-393, doi: https://doi.org/10.1021/cm401445h.
  19. Y. Liu, C. Ji, W. Gu, D. R. Baker, J. Jorne, and H. A. Gasteiger, "Proton Conduction in PEM Fuel Cell Cathodes: Effects of Electrode Thickness and Ionomer Equivalent Weight", Journal of The Electrochemical Society, Vol. 157, No. 3, 2010, pp. B1154-B1162, doi: https://doi.org/10.1149/1.3435323.
  20. Y. Liu, C. Ji, W. Gu, J. Jorne, and H. A. Gasteiger, "Effects of Catalyst Carbon Support on Proton Conduction and Cathode Performance in PEM Fuel Cells", Journal of American Chemical Society, Vol. 158, No. 6, 2011, pp. B614-B621, doi: https://doi.org/10.1149/1.3562945.
  21. M. S. Lee, M. Uchida, H. Yano, D. A. Tryk, H. Uchida, and M. Watanabe, "New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions", Electrochimica Acta, Vol. 55, No. 28, 2010, pp. 8504-8512, doi: https://doi.org/10.1016/j.electacta.2010.07.071.
  22. T. Suzuki, K. Kudo, and Y. Morimoto, "Model for investigation of oxygen transport limitationg in a polymer electrolyte fuel cell", Journal of Power Sources, Vol. 222, 2013, pp.379-389, doi: https://doi.org/10.1016/j.jpowsour.2012.08.068.
  23. T. Y. Kim, J. H. Lee, T. H. Yang, Y. G. Yoon, S. H. Park, and S. D. Yim, "Novel catalyst layer synthesized by an in situ solgel process with tetraethoxysilane in a Nafion ionomer solution with Pt/C/ for PEFCs: the effects of self-assembled Nafion- $SiO_2$ on Pt ORR activity and an increased water content in the polymer membranes", RSC Advances, Vol. 2, 2012, pp. 6957-6969, doi: https://doi.org/10.1039/C2RA20796F.