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Abstract 
 Neural networks have been reborn as a Deep Learning thanks to big data, improved processor, and some 
modification of training methods. Neural networks used to initialize weights in a stupid way, and to choose 
wrong type activation functions of non-linearity. Weight initialization contributes as a significant factor on the 
final quality of a network as well as its convergence rate. This paper discusses different approaches to weight 
initialization. MNIST dataset is used for experiments for comparing their results to find out the best technique 
that can be employed to achieve higher accuracy in relatively lower duration.   
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1. INTRODUCTION 

Neural networks have been renamed Deep Learning in the middle of 2000s, and Google's deep learning Go 
algorithms have gained the world's attention by beating global pros. Neural networks have been born anew 
thanks to the development of big data and improved processors. Acquiring big data has allowed us to test many 
cases and the improved processor can train huge parameters [1]. Of course, Hinton's unremitting efforts also 
played an important role. Many scholars who studied neural networks until the 1990s have almost switched to 
new directions, feeling the limitations of neural networks. However, Professor Hinton even changed university 
from U.S. to Canada for continuing research of neural networks, and eventually regenerating neural networks 
into deep learning. Professor Hinton mentioned two more things besides big data and the improved processors 
for the reason of neural network's success. One is the selection of an appropriate activation function and the 
other is new method of initializing weights [2]. 

In this paper, we attempt to analyze the characteristics of weight initialization methods according to the 
selection of activation function. Section 2 briefly describes the training of multilayer neural networks, Section 
3 discusses weight initialization methods, and in Section 4, we use MNIST dataset for an experiment to 
compare the different approaches of weight initialization. Using a neural networks of 5-hidden layer initialized 
with Batch Normalization method, we achieved the best accuracy on both activation functions such as sigmoid 
and ReLU.  
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2. MULTI-LAYER NEURAL NETWORKS TRAINING  

2. 1. Structure of Multi-layer Neural Networks 

The multilayer neural network consists of an input layer, hidden layers and an output layer. In Figure 1, the 
hidden layer consists of two layers, but more layers can be added as needed. And what connects neurons to 
neurons are weights (w). 

 
         Figure 1. Structure of Multi-Neural Networks 

 
The signal delivered to the i th neuron in the first hidden layer is obtained by multiplying all the values 
connected to the input of this neuron by weights, as follows 

  = ∑                                         (1)  

The weight   connects the i th neuron in the first hidden layer with the j th neuron in the input layer. The 
neuron's activation functions are mainly sigmoid and ReLu(Rectifired Linear unit) functions. Sigmoid 
activation function is as follows 

 () =                                        (2) 
   

 
And the ReLu function is expressed as 

 () =     ( > 0)0   ( ≤ 0)                                 (3) 

2. 2. Neural Networks Training 

The process of training neural networks updates the weights in a way that reduces a loss function. The most 
common loss functions are mean squared error and cross-entropy error. The mean squared error is 

  =  ∑ ( − )                                   (4)    

 
And the cross-entropy error is as follows 
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   = − ∑  log                                   (5)    
 
Where  is the output of the neural network,  is the true value, and k is the number of dimensions of 

the data. Neural network training is the process of finding the optimal weight (w) so that the output () of the 
neural network is close to the true value (), that is, the loss function is minimum [3]. 

 
 
3. WEIGHTS INITIALIZATION OF NEURAL NETWORKS  

3. 1. Random Initialization 

When the activation function is Sigmoid, the farther the weight value is from 0, the larger the standard deviation, the more 
the output value is biased close 0 and 1, and then the gradient is lost. One way to solve this is to initialize the weights in 
a normal distribution with small standard deviation. In general, the initial weights are randomly initialized with a normal 
distribution (Gaussian distribution) with a mean of 0 and a standard deviation of 0.01 as follows 

   ~0.01 × [0,1]                                 (6) 
   

3. 2. Xavier Initialization 

Xavier Glorot and Yoshua Bengio argued that for proper data to flow, the variance of the output of each 
layer must be equal to the variance of the input, and the gradient variance before and after passing through the 
layers in backpropagation must be the same. Based on these assumptions, the Xavier initialization expression 
in the sigmoid activation function is [3]: 

    ~[0,  ()] () =                                   (7) 
   

Where [, ] is the normal distribution with mean of  and variance of , and  is the size of the 
previous layer. The Xavier method shows effective results when the activation function is sigmoid. However, 
when used in the ReLU function, the output value converges to 0. Therefore, another initialization method 
should be used for the ReLU function. 

3. 3. He-at-al Initialization 

Kaiming He proposed an initial value suitable for ReLU, which is called He initial value after his name. The 
equation is as follows [4] 

   ~[0,  ()] () =                                   (8) 
   

As you can see from the above equation, we can see that the initial He value is doubled from the initial value 
of Xavier. The reason is that weights have to be distributed more widely because the outputs of ReLu are all 
zero when the input is negative. 
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3. 4. Batch Normal Initialization 

Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s input changes 
during training, as the parameters of the previous layer change. This slows down the training by requiring 
lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with 
saturating nonlinearities. This phenomenon is referred as internal covariance shift [5]. To prevent this, we can 
simply think about normalizing the distribution of the inputs on each layer to an input with an average of 0 and 
a standard deviation of 1. However, simply fixing the mean and variance to 0 or 1 can eliminate the nonlinearity 
of the activation function. For example, if the input for sigmoid activation is on average 0 and variance 1, the 
output will be more straight rather than curved. Also, the assumption that the feature is uncorrelated may limit 
what the network can represent. To compensate for this, add scale factor (gamma) and shift factor (beta) to the 
normalized values and train these variables together in the back-prop process. For simplicity, instead of 
calculating the mean and variance of the entire training data, it is calculated by mini-batch units. The mean 
and variance are found only within the currently selected mini-batch and normalized using this value. The 
algorithm is as follows. 

   −  ℎ  :  = 1  
 =  1 ( − )

 = ( −  )√ +   =   +    ,    
 

 

 

Algorithm 1: Batch Normal Initialization 

 
4. EMPIRICAL RESULTS AND OBSERVATION 

The MNIST digits (LeCun et al., 1998a), dataset has 60,000 training images, 10,000 test images, each 
showing a 28x28 grey-scale pixel image of one of the 10 digits [6]. We optimized back-propagation networks 
with five hidden layers, with one hundred hidden units per layer, and with a softmax logistic regression for the 
output layer. The cost function is a cross entropy error. The neural networks were optimized with stochastic 
back-propagation on mini-batches of size 256. For experimenting, we tested the different types of weight 
initialization method: random, Xavier, He, and batch normalization. Also, we tested different types of 
activation function for select the weight initialization method best fitted to them. 

Figure 2 shows the evolution of the cross entropy error using the activation functions of sigmoid and ReLu. 
It has been shown in figure 2a that Batch Normal initialization has shown quickly to reduces cross entropy 
error with a sigmoid function, the other methods do not seem to converge. Although all weight initialization 
methods except random normalization method seem to be trained well with a ReLu function, Batch Normal 
method shows the best result. We performed the accuracy test of the network using various initialization 
methods using a sigmoid and ReLu function. Batch normal method shows superior to other methods as shown 
in figure 3.  

With this experiment, it can be inferred for multiple neural networks discerning MNIST datasets that ReLu 
is more suitable activation function than sigmoid and Batch normal is a superior method for weight 
initialization.  
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(a)                                            (b) 

Figure 2. Cross entropy errs with different weight initialization methods using (a) sigmoid (b) ReLu 

 

(a)                                              (b)       

Figure 3. Accuracy with different weight initialization methods using (a) sigmoid (b) ReLu 

 
5. CONCLUSION 

In this paper, a study of four weight initialization methods namely Random initialization, Xavier 
initialization, He-et-al initialization, and Batch normal initialization are used to predict the optimal way to 
initialize the weights in a Neural Network. The results of our experiments indicate that the Batch Normal 
initialization method of initializing weights performed better than the other available methods and also ReLu 
is more suitable activation function than sigmoid. 
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