DOI QR코드

DOI QR Code

The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease

  • Kim, Dong Kyu (Department of Biomedical Sciences, College of Medicine, Seoul National University) ;
  • MookJung, Inhee (Department of Biomedical Sciences, College of Medicine, Seoul National University)
  • Received : 2019.11.04
  • Published : 2019.12.31

Abstract

The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer's disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.

Keywords

References

  1. Querfurth HW and LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362, 329-344 https://doi.org/10.1056/NEJMra0909142
  2. Cao J, Hou J, Ping J and Cai D (2018) Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 13, 64 https://doi.org/10.1186/s13024-018-0299-8
  3. Sanabria-Castro A, Alvarado-Echeverria I and Monge-Bonilla C (2017) Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci 24, 46-54 https://doi.org/10.1159/000464422
  4. Marcus C, Mena E and Subramaniam RM (2014) Brain PET in the diagnosis of Alzheimer's disease. Clin Nucl Med 39, e413-422; quiz e423-416 https://doi.org/10.1097/RLU.0000000000000547
  5. Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S and de Leon MJ (2010) Pre-clinical detection of Alzheimer's disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis 20, 843-854 https://doi.org/10.3233/JAD-2010-091504
  6. Patel JR and Brewer GJ (2003) Age-related changes in neuronal glucose uptake in response to glutamate and beta-amyloid. J Neurosci Res 72, 527-536 https://doi.org/10.1002/jnr.10602
  7. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38, 357-366 https://doi.org/10.1002/ana.410380304
  8. Mancuso M, Calsolaro V, Orsucci D et al (2009) Mitochondria, cognitive impairment, and Alzheimer's disease. Int J Alzheimers Dis 2009, 951548
  9. Zhu X, Perry G, Smith MA and Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 33 Suppl 1, S253-262
  10. Wang X, Su B, Zheng L, Perry G, Smith MA and Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Neurochem 109 Suppl 1, 153-159 https://doi.org/10.1111/j.1471-4159.2009.05867.x
  11. Swerdlow RH (2018) Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. J Alzheimers Dis 62, 1403-1416 https://doi.org/10.3233/JAD-170585
  12. Swerdlow RH, Burns JM and Khan SM (2010) The Alzheimer's disease mitochondrial cascade hypothesis. J Alzheimers Dis 20 Suppl 2, S265-279 https://doi.org/10.3233/JAD-2010-100339
  13. Swerdlow RH, Burns JM and Khan SM (2014) The Alzheimer's disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842, 1219-1231 https://doi.org/10.1016/j.bbadis.2013.09.010
  14. Cheng Y and Bai F (2018) The Association of Tau With Mitochondrial Dysfunction in Alzheimer's Disease. Front Neurosci 12, 163 https://doi.org/10.3389/fnins.2018.00163
  15. Reddy PH and Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med 14, 45-53 https://doi.org/10.1016/j.molmed.2007.12.002
  16. Szablewski L (2017) Glucose Transporters in Brain: In Health and in Alzheimer's Disease. J Alzheimers Dis 55, 1307-1320 https://doi.org/10.3233/JAD-160841
  17. Sun J, Feng X, Liang D, Duan Y and Lei H (2012) Down-regulation of energy metabolism in Alzheimer's disease is a protective response of neurons to the microenvironment. J Alzheimers Dis 28, 389-402 https://doi.org/10.3233/JAD-2011-111313
  18. Sonntag KC, Ryu WI, Amirault KM et al (2017) Late-onset Alzheimer's disease is associated with inherent changes in bioenergetics profiles. Sci Rep 7, 14038 https://doi.org/10.1038/s41598-017-14420-x
  19. Carvalho C, Cardoso S, Correia SC et al (2012) Metabolic alterations induced by sucrose intake and Alzheimer's disease promote similar brain mitochondrial abnormalities. Diabetes 61, 1234-1242 https://doi.org/10.2337/db11-1186
  20. Zhang C, Rissman RA and Feng J (2015) Characterization of ATP alternations in an Alzheimer's disease transgenic mouse model. J Alzheimers Dis 44, 375-378 https://doi.org/10.3233/JAD-141890
  21. Cha MY, Han SH, Son SM et al (2012) Mitochondriaspecific accumulation of amyloid beta induces mitochondrial dysfunction leading to apoptotic cell death. PLoS One 7, e34929 https://doi.org/10.1371/journal.pone.0034929
  22. Keeney JT, Ibrahimi S and Zhao L (2015) Human ApoE Isoforms Differentially Modulate Glucose and Amyloid Metabolic Pathways in Female Brain: Evidence of the Mechanism of Neuroprotection by ApoE2 and Implications for Alzheimer's Disease Prevention and Early Intervention. J Alzheimers Dis 48, 411-424 https://doi.org/10.3233/JAD-150348
  23. Wu L, Zhang X and Zhao L (2018) Human ApoE Isoforms Differentially Modulate Brain Glucose and Ketone Body Metabolism: Implications for Alzheimer's Disease Risk Reduction and Early Intervention. J Neurosci 38, 6665-6681 https://doi.org/10.1523/JNEUROSCI.2262-17.2018
  24. Rhein V, Baysang G, Rao S et al (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29, 1063-1071 https://doi.org/10.1007/s10571-009-9398-y
  25. Beck SJ, Guo L, Phensy A et al (2016) Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun 7, 11483 https://doi.org/10.1038/ncomms11483
  26. David DC, Hauptmann S, Scherping I et al (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280, 23802-23814 https://doi.org/10.1074/jbc.M500356200
  27. Schulz KL, Eckert A, Rhein V et al (2012) A new link to mitochondrial impairment in tauopathies. Mol Neurobiol 46, 205-216 https://doi.org/10.1007/s12035-012-8308-3
  28. Rhein V, Song X, Wiesner A et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A 106, 20057-20062 https://doi.org/10.1073/pnas.0905529106
  29. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J and Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15, 1437-1449 https://doi.org/10.1093/hmg/ddl066
  30. Caspersen C, Wang N, Yao J et al (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease. FASEB J 19, 2040-2041 https://doi.org/10.1096/fj.05-3735fje
  31. Devi L, Prabhu BM, Galati DF, Avadhani NG and Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci 26, 9057-9068 https://doi.org/10.1523/JNEUROSCI.1469-06.2006
  32. Hansson Petersen CA, Alikhani N, Behbahani H et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105, 13145-13150 https://doi.org/10.1073/pnas.0806192105
  33. Chen JX and Yan SS (2010) Role of mitochondrial amyloid-beta in Alzheimer's disease. J Alzheimers Dis 20 Suppl 2, S569-578 https://doi.org/10.3233/JAD-2010-100357
  34. Han SH, Park JC and Mook-Jung I (2016) Amyloid beta-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 137, 17-38 https://doi.org/10.1016/j.pneurobio.2015.12.004
  35. Yoshida M, Muneyuki E and Hisabori T (2001) ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2, 669-677 https://doi.org/10.1038/35089509
  36. Cha MY, Cho HJ, Kim C et al (2015) Mitochondrial ATP synthase activity is impaired by suppressed OGlcNAcylation in Alzheimer's disease. Hum Mol Genet 24, 6492-6504 https://doi.org/10.1093/hmg/ddv358
  37. Halestrap A (2005) Biochemistry: a pore way to die. Nature 434, 578-579 https://doi.org/10.1038/434578a
  38. Nicotra A and Parvez S (2002) Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 24, 599-605 https://doi.org/10.1016/S0892-0362(02)00213-1
  39. Zamzami N, Larochette N and Kroemer G (2005) Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 12 Suppl 2, 1478-1480 https://doi.org/10.1038/sj.cdd.4401682
  40. Javadov S and Kuznetsov A (2013) Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol 4, 76
  41. Du H, Guo L, Fang F et al (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 14, 1097-1105 https://doi.org/10.1038/nm.1868
  42. Lustbader JW, Cirilli M, Lin C et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304, 448-452 https://doi.org/10.1126/science.1091230
  43. Vogtle FN, Wortelkamp S, Zahedi RP et al (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428-439 https://doi.org/10.1016/j.cell.2009.07.045
  44. Mossmann D, Vogtle FN, Taskin AA et al (2014) Amyloid-beta peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab 20, 662-669 https://doi.org/10.1016/j.cmet.2014.07.024
  45. Mishra P and Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212, 379-387 https://doi.org/10.1083/jcb.201511036
  46. Youle RJ and van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 https://doi.org/10.1126/science.1219855
  47. Zhang L, Trushin S, Christensen TA et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Sci Rep 6, 18725 https://doi.org/10.1038/srep18725
  48. Shah SI, Paine JG, Perez C and Ullah G (2019) Mitochondrial fragmentation and network architecture in degenerative diseases. PLoS One 14, e0223014 https://doi.org/10.1371/journal.pone.0223014
  49. Wang X, Su B, Lee HG et al (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 29, 9090-9103 https://doi.org/10.1523/JNEUROSCI.1357-09.2009
  50. Tyumentsev MA, Stefanova NA, Kiseleva EV and Kolosova NG (2018) Mitochondria with Morphology Characteristic for Alzheimer's Disease Patients Are Found in the Brain of OXYS Rats. Biochemistry (Mosc) 83, 1083-1088 https://doi.org/10.1134/S0006297918090109
  51. Trushina E (2016) A shape shifting organelle: unusual mitochondrial phenotype determined with threedimensional electron microscopy reconstruction. Neural Regen Res 11, 900-901
  52. Xie H, Guan J, Borrelli LA, Xu J, Serrano-Pozo A and Bacskai BJ (2013) Mitochondrial alterations near amyloid plaques in an Alzheimer's disease mouse model. J Neurosci 33, 17042-17051 https://doi.org/10.1523/JNEUROSCI.1836-13.2013
  53. Perez MJ, Ponce DP, Osorio-Fuentealba C, Behrens MI and Quintanilla RA (2017) Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease. Front Neurosci 11, 553 https://doi.org/10.3389/fnins.2017.00553
  54. Manczak M, Calkins MJ and Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet 20, 2495-2509 https://doi.org/10.1093/hmg/ddr139
  55. Joshi AU, Saw NL, Shamloo M and Mochly-Rosen D (2018) Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer's disease. Oncotarget 9, 6128-6143 https://doi.org/10.18632/oncotarget.23640
  56. Baek SH, Park SJ, Jeong JI et al (2017) Inhibition of Drp1 Ameliorates Synaptic Depression, Abeta Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. J Neurosci 37, 5099-5110 https://doi.org/10.1523/JNEUROSCI.2385-16.2017
  57. Wang X, Su B, Siedlak SL et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105, 19318-19323 https://doi.org/10.1073/pnas.0804871105
  58. Knott AB, Perkins G, Schwarzenbacher R and Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9, 505-518 https://doi.org/10.1038/nrn2417
  59. Westermann B (2009) Nitric oxide links mitochondrial fission to Alzheimer's disease. Sci Signal 2, pe29
  60. Cho DH, Nakamura T, Fang J et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102-105 https://doi.org/10.1126/science.1171091
  61. Kang S, Byun J, Son SM and Mook-Jung I (2018) Thrombospondin-1 protects against Abeta-induced mitochondrial fragmentation and dysfunction in hippocampal cells. Cell Death Discov 4, 31 https://doi.org/10.1038/s41420-017-0023-4
  62. Manczak M and Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21, 2538-2547 https://doi.org/10.1093/hmg/dds072
  63. Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H and Reddy PH (2016) Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 25, 4881-4897
  64. Perez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F and Quintanilla RA (2018) Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease. Mol Neurobiol 55, 1004-1018 https://doi.org/10.1007/s12035-017-0385-x
  65. Byun J, Son SM, Cha MY et al (2015) CR6-interacting factor 1 is a key regulator in Abeta-induced mitochondrial disruption and pathogenesis of Alzheimer's disease. Cell Death Differ 22, 959-973 https://doi.org/10.1038/cdd.2014.184
  66. Kim C, Choi H, Jung ES et al (2012) HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 7, e42983 https://doi.org/10.1371/journal.pone.0042983
  67. Shahpasand K, Uemura I, Saito T et al (2012) Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J Neurosci 32, 2430-2441 https://doi.org/10.1523/JNEUROSCI.5927-11.2012
  68. Kopeikina KJ, Carlson GA, Pitstick R et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. Am J Pathol 179, 2071-2082 https://doi.org/10.1016/j.ajpath.2011.07.004
  69. Stamer K, Vogel R, Thies E, Mandelkow E and Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156, 1051-1063 https://doi.org/10.1083/jcb.200108057
  70. Fecher C, Trovo L, Muller SA et al (2019) Cell-typespecific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci 22, 1731-1742 https://doi.org/10.1038/s41593-019-0479-z
  71. Ioannou MS, Jackson J, Sheu SH et al (2019) Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 177, 1522-1535 e1514 https://doi.org/10.1016/j.cell.2019.04.001
  72. Park J, Choi H, Min JS et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127, 221-232 https://doi.org/10.1111/jnc.12361
  73. Orihuela R, McPherson CA and Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173, 649-665 https://doi.org/10.1111/bph.13139
  74. Vos M, Lauwers E and Verstreken P (2010) Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2, 139 https://doi.org/10.3389/fnsyn.2010.00139
  75. Davey GP, Peuchen S and Clark JB (1998) Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273, 12753-12757 https://doi.org/10.1074/jbc.273.21.12753
  76. Brown MR, Sullivan PG and Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+overload than nonsynaptic mitochondria. J Biol Chem 281, 11658-11668 https://doi.org/10.1074/jbc.M510303200
  77. Zott B, Simon MM, Hong W et al (2019) A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365, 559-565 https://doi.org/10.1126/science.aay0198
  78. Du H, Guo L, Yan S, Sosunov AA, McKhann GM and Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 107, 18670-18675 https://doi.org/10.1073/pnas.1006586107
  79. Pickett EK, Rose J, McCrory C et al (2018) Regionspecific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. Acta Neuropathol 136, 747-757 https://doi.org/10.1007/s00401-018-1903-2
  80. Jadiya P, Kolmetzky DW, Tomar D et al (2019) Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease. Nat Commun 10, 3885 https://doi.org/10.1038/s41467-019-11813-6
  81. Lee SH, Kim KR, Ryu SY et al (2012) Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer's disease. J Neurosci 32, 5953-5963 https://doi.org/10.1523/JNEUROSCI.0465-12.2012
  82. Lee SH, Lutz D, Mossalam M, Bolshakov VY, Frotscher M and Shen J (2017) Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Mol Neurodegener 12, 48 https://doi.org/10.1186/s13024-017-0189-5
  83. Gazit N, Vertkin I, Shapira I et al (2016) IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron 89, 583-597 https://doi.org/10.1016/j.neuron.2015.12.034
  84. Moloney AM, Griffin RJ, Timmons S, O'Connor R, Ravid R and O'Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31, 224-243 https://doi.org/10.1016/j.neurobiolaging.2008.04.002
  85. Zhang B, Tang XC and Zhang HY (2013) Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models. J Neurosci Res 91, 717-725 https://doi.org/10.1002/jnr.23201
  86. Allen NJ and Eroglu C (2017) Cell Biology of Astrocyte-Synapse Interactions. Neuron 96, 697-708 https://doi.org/10.1016/j.neuron.2017.09.056
  87. Rose CF, Verkhratsky A and Parpura V (2013) Astrocyte glutamine synthetase: pivotal in health and disease. Biochem Soc Trans 41, 1518-1524 https://doi.org/10.1042/BST20130237
  88. Jackson JG, O'Donnell JC, Takano H, Coulter DA and Robinson MB (2014) Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. J Neurosci 34, 1613-1624 https://doi.org/10.1523/JNEUROSCI.3510-13.2014
  89. Xu NJ, Bao L, Fan HP et al (2003) Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampal synapses. J Neurosci 23, 4775-4784 https://doi.org/10.1523/JNEUROSCI.23-11-04775.2003
  90. Genda EN, Jackson JG, Sheldon AL et al (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31, 18275-18288 https://doi.org/10.1523/JNEUROSCI.3305-11.2011
  91. Canals S, Larrosa B, Pintor J, Mena MA and Herreras O (2008) Metabolic challenge to glia activates an adenosine-mediated safety mechanism that promotes neuronal survival by delaying the onset of spreading depression waves. J Cereb Blood Flow Metab 28, 1835-1844 https://doi.org/10.1038/jcbfm.2008.71
  92. Belanger M, Allaman I and Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14, 724-738 https://doi.org/10.1016/j.cmet.2011.08.016
  93. Bouzier-Sore AK and Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 7, 179 https://doi.org/10.3389/fncel.2013.00179
  94. Fu W, Shi D, Westaway D and Jhamandas JH (2015) Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J Biol Chem 290, 12504-12513 https://doi.org/10.1074/jbc.M114.618157
  95. Ebert D, Haller RG and Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23, 5928-5935 https://doi.org/10.1523/JNEUROSCI.23-13-05928.2003
  96. Jones VC, Atkinson-Dell R, Verkhratsky A and Mohamet L (2017) Aberrant iPSC-derived human astrocytes in Alzheimer's disease. Cell Death Dis 8, e2696 https://doi.org/10.1038/cddis.2017.89
  97. Oksanen M, Petersen AJ, Naumenko N et al (2017) PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease. Stem Cell Reports 9, 1885-1897 https://doi.org/10.1016/j.stemcr.2017.10.016
  98. Sekar S, McDonald J, Cuyugan L et al (2015) Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol Aging 36, 583-591 https://doi.org/10.1016/j.neurobiolaging.2014.09.027
  99. Myung NH, Zhu X, Kruman, II et al (2008) Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr) 30, 209-215 https://doi.org/10.1007/s11357-008-9050-7
  100. Simpson JE, Ince PG, Haynes LJ et al (2010) Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 36, 25-40 https://doi.org/10.1111/j.1365-2990.2009.01030.x
  101. Lee HP, Pancholi N, Esposito L et al (2012) Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity. PLoS One 7, e28033 https://doi.org/10.1371/journal.pone.0028033
  102. Sarkar P, Zaja I, Bienengraeber M et al (2014) Epoxyeicosatrienoic acids pretreatment improves amyloid beta-induced mitochondrial dysfunction in cultured rat hippocampal astrocytes. Am J Physiol Heart Circ Physiol 306, H475-484 https://doi.org/10.1152/ajpheart.00001.2013
  103. Abeti R, Abramov AY and Duchen MR (2011) Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134, 1658-1672 https://doi.org/10.1093/brain/awr104
  104. Abramov AY, Canevari L and Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24, 565-575 https://doi.org/10.1523/JNEUROSCI.4042-03.2004
  105. Culmsee C, Michels S, Scheu S, Arolt V, Dannlowski U and Alferink J (2018) Mitochondria, Microglia, and the Immune System-How Are They Linked in Affective Disorders? Front Psychiatry 9, 739 https://doi.org/10.3389/fphys.2018.00739
  106. Baik SH, Kang S, Lee W et al (2019) A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer's Disease. Cell Metab 30, 493-507 e496 https://doi.org/10.1016/j.cmet.2019.06.005
  107. Konttinen H, Cabral-da-Silva MEC, Ohtonen S et al (2019) PSEN1DeltaE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Reports 13, 669-683 https://doi.org/10.1016/j.stemcr.2019.08.004
  108. Ulland TK, Song WM, Huang SC et al (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell 170, 649-663 e613 https://doi.org/10.1016/j.cell.2017.07.023
  109. Joshi AU, Minhas PS, Liddelow SA et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22, 1635-1648 https://doi.org/10.1038/s41593-019-0486-0
  110. Fang EF, Hou Y, Palikaras K et al (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 22, 401-412 https://doi.org/10.1038/s41593-018-0332-9