DOI QR코드

DOI QR Code

소아 피부 및 연조직 감염 환자에서의 황색포도알균의 항생제 감수성의 변화: 2010년부터 2018년까지 단일기관에서의 경험

Changing Susceptibility of Staphylococcus aureus in Children with Skin and Soft Tissue Infections: a Single Center Experience from 2010 to 2018

  • 조용선 (차의과학대학교 분당차병원 소아청소년과) ;
  • 이신혜 (차의과학대학교 분당차병원 소아청소년과) ;
  • 이택진 (차의과학대학교 분당차병원 소아청소년과)
  • Cho, Yong-Sun (Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Lee, Shin-Hye (Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine) ;
  • Lee, Taek-Jin (Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine)
  • 투고 : 2019.07.05
  • 심사 : 2019.10.21
  • 발행 : 2019.12.25

초록

목적: 피부 및 연조직 감염(skin and soft tissue infections [SSTIs])의 가장 흔한 원인은 황색포도알균(Staphylococcus aureus)이다. 본 연구는 19세 미만의 SSTI 환자에서 분리된 황색포도알균의 항생제 감수성의 변화추이를 알아보고자 하였다. 방법: 황색포도알균이 분리된 소아청소년 지역사회관련 SSTI 환자에서 후향적 관찰연구를 시행하였다. 미생물학 및 인구학적 자료를 수집하고, 항생제 감수성의 변화추이를 관찰하였다. 결과: 2010년 1월부터 2018년 12월까지 총 807개의 지역사회관련 황색포도알균이 연구에 포함되었다. Oxacillin에 대한 감수성은 전반적으로 증가하여(P<0.001) 2018년에는 75.0%였다. Trimethoprim/sulfamethoxazole과 tetracycline에 대한 감수성은 매우 높게 유지되어 2018년 각각 97.6%와 95.2%였다. 만 1-5세 연령군에서 만 6-18세 연령군에 비해 oxacillin 감수성이 유의하게 낮았다(53.4% vs. 75.0%, P<0.001). 결론: 소아청소년의 지역사회관련 SSTI의 원인이 된 황색포도알균 중 메티실린내성 황색포도알균의 비율이 감소하고 있는 것으로 보인다. 임상의는 경험적 항생제를 선택할 때 지역적 항생제 감수성 양상을 확인해야 한다.

Purpose: Staphylococcus aureus is a major cause of skin and soft tissue infections (SSTIs). This study aimed to determine the temporal trends in antibiotic susceptibility of S. aureus in SSTI patients aged <19 years. Methods: This retrospective observational study was conducted in pediatric patients with SSTI caused by community-associated S. aureus. Microbiologic and demographic data were collected, and the trends of antibiotic susceptibility results were evaluated. Results: From January 2010 to December 2018, a total of 807 S. aureus isolates were included. An overall increase in susceptibility of isolates to oxacillin was noted (P<0.001), with 75.0% of isolates being oxacillin-susceptible in 2018. S. aureus remained highly susceptible to trimethoprim/sulfamethoxazole and tetracycline, with 97.6% and 95.2% isolate susceptibility in 2018, respectively. Isolates from younger children aged 1 to 5 years had a significantly lower rate of susceptibility to oxacillin than older children aged 6 to 18 years (53.4% vs. 75.0%, P<0.001). Conclusions: The proportion of methicillin-resistant S. aureus isolates appears to decrease in pediatric patients with community-associated SSTI caused by S. aureus. Clinicians should be aware of regional susceptibility patterns when choosing empirical regimens.

키워드

참고문헌

  1. Moet GJ, Jones RN, Biedenbach DJ, Stilwell MG, Fritsche TR. Contemporary causes of skin and soft tissue infections in North America, Latin America, and Europe: report from the SENTRY Antimicrobial Surveillance Program (1998-2004). Diagn Microbiol Infect Dis 2007;57:7-13. https://doi.org/10.1016/j.diagmicrobio.2006.05.009
  2. Edelsberg J, Taneja C, Zervos M, Haque N, Moore C, Reyes K, et al. Trends in US hospital admissions for skin and soft tissue infections. Emerg Infect Dis 2009;15:1516-8. https://doi.org/10.3201/eid1509.081228
  3. Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med 2008;51:291-8. https://doi.org/10.1016/j.annemergmed.2007.12.004
  4. Chuang YY, Huang YC. Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect Dis 2013;13:698-708. https://doi.org/10.1016/S1473-3099(13)70136-1
  5. Ma SH, Lee YS, Lee SH, Kim HK, Jin JS, Shin EK, et al. Meticillin-resistant Staphylococcus aureus clones with distinct clinical and microbiological features in a Korean community. J Med Microbiol 2007;56:866-8. https://doi.org/10.1099/jmm.0.46962-0
  6. Choe YJ, Lee SY, Sung JY, Yang MA, Lee JH, Oh CE, et al. A review of Staphylococcus aureus infections in children with an emphasis on community-associated methicillin-resistant S. aureus infections. Korean J Pediatr Infect Dis 2009;16:150-61. https://doi.org/10.14776/kjpid.2009.16.2.150
  7. Velasco D, del Mar Tomas M, Cartelle M, Beceiro A, Perez A, Molina F, et al. Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother 2005;55:379-82. https://doi.org/10.1093/jac/dki017
  8. Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg Infect Dis 2007;13:1840-6. https://doi.org/10.3201/eid1312.070629
  9. Landrum ML, Neumann C, Cook C, Chukwuma U, Ellis MW, Hospenthal DR, et al. Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system, 2005-2010. JAMA 2012;308:50-9.
  10. Sutter DE, Milburn E, Chukwuma U, Dzialowy N, Maranich AM, Hospenthal DR. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics 2016;137:e20153099. https://doi.org/10.1542/peds.2015-3099
  11. Johnson AP, Davies J, Guy R, Abernethy J, Sheridan E, Pearson A, et al. Mandatory surveillance of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in England: the first 10 years. J Antimicrob Chemother 2012;67:802-9. https://doi.org/10.1093/jac/dkr561
  12. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance (EARS-Net). In: ECDC. Annual epidemiological report for 2014. Stockholm: ECDC, 2018:1-14.
  13. Moon HW, Kim HJ, Hur M, Yun YM. Antimicrobial susceptibility profiles of Staphylococcus aureus isolates classified according to their origin in a tertiary hospital in Korea. Am J Infect Control 2014;42:1340-2. https://doi.org/10.1016/j.ajic.2014.08.014
  14. Kim ES, Kim HB, Kim G, Kim KH, Park KH, Lee S, et al. Clinical and epidemiological factors associated with methicillin resistance in community-onset invasive Staphylococcus aureus infections: prospective multicenter cross-sectional study in Korea. PLoS One 2014;9:e114127. https://doi.org/10.1371/journal.pone.0114127
  15. Baek YS, Jeon J, Ahn JW, Song HJ. Antimicrobial resistance of Staphylococcus aureus isolated from skin infections and its implications in various clinical conditions in Korea. Int J Dermatol 2016;55:e191-7. https://doi.org/10.1111/ijd.13046
  16. Lim S, Ha SG, Tchah H, Jeon IS, Ryoo E, Son DW, et al. Epidemiology of Staphylococcus aureus bacteremia in children at a single center from 2002 to 2016. Pediatr Infect Vaccine 2019;26:11-21. https://doi.org/10.14776/piv.2019.26.e2
  17. Shin SM, Shin JY, Kim MH, Lee SH, Choi S, Park BJ. Prevalence of antibiotic use for pediatric acute upper respiratory tract infections in Korea. J Korean Med Sci 2015;30:617-24. https://doi.org/10.3346/jkms.2015.30.5.617
  18. Park JM, Jo JH, Jin H, Ko HC, Kim MB, Kim JM, et al. Change in antimicrobial susceptibility of skin-colonizing Staphylococcus aureus in Korean patients with atopic dermatitis during ten-year period. Ann Dermatol 2016;28:470-8. https://doi.org/10.5021/ad.2016.28.4.470
  19. Hwang Y, Kang JS, Kim BK, Kim SW. Colonization of Staphylococcus aureus and sensitivity to antibiotics in children with atopic dermatitis. Allergy Asthma Respir Dis 2017;5:21-6. https://doi.org/10.4168/aard.2017.5.1.21
  20. Kaplan SL. Treatment of community-associated methicillin-resistant Staphylococcus aureus infections. Pediatr Infect Dis J 2005;24:457-8. https://doi.org/10.1097/01.inf.0000164162.00163.9d
  21. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis 2014;59:147-59. https://doi.org/10.1093/cid/ciu444
  22. Herigon JC, Hersh AL, Gerber JS, Zaoutis TE, Newland JG. Antibiotic management of Staphylococcus aureus infections in US children's hospitals, 1999-2008. Pediatrics 2010;125:e1294-300. https://doi.org/10.1542/peds.2009-2867
  23. Khamash DF, Voskertchian A, Tamma PD, Akinboyo IC, Carroll KC, Milstone AM. Increasing clindamycin and trimethoprim-sulfamethoxazole resistance in pediatric Staphylococcus aureus infections. J Pediatric Infect Dis Soc 2019;8:351-3. https://doi.org/10.1093/jpids/piy062
  24. Song YK, Han N, Kim MG, Chang HJ, Sohn HS, Ji E, et al. A national pharmacoepidemiological study of antibiotic use in Korean paediatric outpatients. Arch Dis Child 2017;102:660-6. https://doi.org/10.1136/archdischild-2016-310981
  25. Levi N, Bastuji-Garin S, Mockenhaupt M, Roujeau JC, Flahault A, Kelly JP, et al. Medications as risk factors of Stevens-Johnson syndrome and toxic epidermal necrolysis in children: a pooled analysis. Pediatrics 2009;123:e297-304. https://doi.org/10.1542/peds.2008-1923
  26. Williams DJ, Cooper WO, Kaltenbach LA, Dudley JA, Kirschke DL, Jones TF, et al. Comparative effectiveness of antibiotic treatment strategies for pediatric skin and soft-tissue infections. Pediatrics 2011;128:e479-87.
  27. Miller LG, Daum RS, Creech CB, Young D, Downing MD, Eells SJ, et al. Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections. N Engl J Med 2015;372:1093-103. https://doi.org/10.1056/NEJMoa1403789
  28. Grossman ER, Walchek A, Freedman H, Flanagan C. Tetracyclines and permanent teeth: the relation between dose and tooth color. Pediatrics 1971;47:567-70.
  29. Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect 2016;22:416-22. https://doi.org/10.1016/j.cmi.2015.12.002