DOI QR코드

DOI QR Code

Photocatalytic Efficiency and Bandgap Property of the CdS Deposited TiO2 Photocatalysts

TiO2/CdS 복합광촉매의 밴드갭 에너지 특성과 광촉매 효율

  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Heo, Sujeong (Department of Chemistry, Hanseo University) ;
  • Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Suh, Su-Jeong (School of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Oh, Han-Jun (Department of Materials Science, Hanseo University)
  • 이종호 (한서대학교 화학과) ;
  • 허수정 (한서대학교 화학과) ;
  • 윤정일 (성균관대학교 신소재공학부) ;
  • 김영직 (성균관대학교 신소재공학부) ;
  • 서수정 (성균관대학교 신소재공학부) ;
  • 오한준 (한서대학교 신소재공학과)
  • Received : 2019.11.10
  • Accepted : 2019.11.19
  • Published : 2019.12.27

Abstract

To improve photocatalytic performance, CdS nanoparticle deposited TiO2 nanotubular photocatalysts are synthesized. The TiO2 nanotube is fabricated by electrochemical anodization at a constant voltage of 60 V, and annealed at 500 for crystallization. The CdS nanoparticles on TiO2 nanotubes are synthesized by successive ionic layer adsorption and reaction method. The surface characteristics and photocurrent responses of TNT/CdS photocatalysts are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis spectrometer and LED light source installed potentiostat. The bandgaps of the CdS deposited TiO2 photocatalysts are gradually narrowed with increasing of amounts of deposited CdS nanoparticles, which enhances visible light absorption ability of composite photocatalysts. Enhanced photoelectrochemical performance is observed in the nanocomposite TiO2 photocatalyst. However, the maximum photocurrent response and dye degradation efficiency are observed for TNT/CdS30 photocatalyst. The excellent photocatalytic performance of TNT/CdS30 catalyst can be ascribed to the synergistic effects of its better absorption ability of visible light region and efficient charge transport process.

Keywords

References

  1. K. Xie, Z. Wu, M. Wang, J. Yu, C. Gong, L. Sun and C. Lin, Electrochem. Commun., 63, 56 (2016). https://doi.org/10.1016/j.elecom.2015.12.013
  2. X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin and F. Qu, J. Colloid Interface Sci., 452, 89 (2015). https://doi.org/10.1016/j.jcis.2015.04.034
  3. L. Yu, D. Wang and D. Ye, Sep. Purif. Technol., 156, 708 (2015). https://doi.org/10.1016/j.seppur.2015.10.069
  4. P. Yilmaz, A.M. Lacerda, I. Larrosa and S. Dunn, Electrochim. Acta, 231, 641 (2017). https://doi.org/10.1016/j.electacta.2017.02.035
  5. H. Li, Z. Xia, J. Chen, L. Lei and J. Xing, Appl. Catal., B, 168-169, 105 (2015). https://doi.org/10.1016/j.apcatb.2014.12.029
  6. B. Tan and Y. Wu, J. Phys. Chem. B, 110, 15932 (2006). https://doi.org/10.1021/jp063972n
  7. M. Wang, Z. Cui, M. Yang, L. Lin, X. Chen, M. Wang and J. Han, J. Colloid Interface Sci., 544, 1 (2019). https://doi.org/10.1016/j.jcis.2019.02.080
  8. S.-Y. Li, Z.-L. Liu, G.-X. Xiang, B.-H. Ma, X.-D. Meng and Y.-L. He, Ceram. Int., 45, 767 (2019). https://doi.org/10.1016/j.ceramint.2018.09.243
  9. A. Monamary and K. Vijayalakshmi, Ceram. Int., 44, 22957 (2018). https://doi.org/10.1016/j.ceramint.2018.09.093
  10. J. -H. Lee, J. -I.Youn, Y. -J. Kim, I. -K. Kim, K. -W. Jang and H. -J. Oh, Ceram. Int., 41, 11899 (2015). https://doi.org/10.1016/j.ceramint.2015.05.157
  11. B. Zielinska and A. W. Morawski, Appl. Catal., B, 55, 221 (2005). https://doi.org/10.1016/j.apcatb.2004.08.015
  12. S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal., B, 74, 53 (2007). https://doi.org/10.1016/j.apcatb.2006.12.015
  13. F. Tian, D. Hou, F. Hu, K. Xie, X. Qiao and D. Li, Appl. Surf. Sci., 391, 295 (2017). https://doi.org/10.1016/j.apsusc.2016.07.010