DOI QR코드

DOI QR Code

Fabrication of Free-Standing Three-Dimensional Block Copolymer Patterns on Substrate

블록 공중합체 3차원 패턴의 제조 방법 및 그 구조 특성

  • Choi, Hong Kyoon (Division of Advanced Materials Engineering, Kongju National University)
  • 최홍균 (공주대학교 신소재공학부)
  • Received : 2019.11.07
  • Accepted : 2019.11.25
  • Published : 2019.12.27

Abstract

As the importance of three-dimensiona (3D) nano patterns and structures has recently emerged, interest in the study of 3D structures of block copolymers has increased. However, most existing studies on block copolymer 3D patterns on substrates are limited to simple 3D structures such as a multi-layered forms. In this study, we propose an experimental method for realizing free-standing 3D block copolymer patterns on substrates using an e-beam lithographic template and film transfer method. The block copolymer 3D structure formed in wide hole templates are similar to simple multi-layered structures; however, as the width of the hole template become narrower, more complex block copolymer 3D structures are formed in which the upper and lower layer structures are interconnected. Furthermore, we introduce a method to fabricate novel block copolymer structures in which the 2D planar structures are connected to 3D complex structures. Proposed 3D block copolymer fabrication method provides a framework for generation of unconventional 3D structures of block copolymer, which can be useful for next generation 3D devices.

Keywords

References

  1. W. S. Young, W. F. Kuan and T. H. Epps, J. Polym. Sci., Part B: Polym. Phys., 52, 1 (2014). https://doi.org/10.1002/polb.23404
  2. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G. T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung and K. J. Lee, Nano Lett., 14, 7031 (2014). https://doi.org/10.1021/nl503402c
  3. D. J. C. Herr, J. Mater. Res., 26, 122 (2011). https://doi.org/10.1557/jmr.2010.74
  4. H. C. Kim, S. M. Park, W. D. Hinsberg and I. R. Division, Chem. Rev., 110, 146 (2010). https://doi.org/10.1021/cr900159v
  5. C. Hagglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. R. Lee, M. L. Brongersma and S. F. Bent, Nano Lett., 13, 3352 (2013). https://doi.org/10.1021/nl401641v
  6. S. K. Cha, J. H. Mun, T. Chang, S. Y. Kim, J. Y. Kim, H. M. Jin, J. Y. Lee, J. Shin, K. H. Kim and S. O. Kim, ACS Nano, 9, 5536 (2015). https://doi.org/10.1021/acsnano.5b01641
  7. S. P. Nunes and A. Car, Ind. Eng. Chem. Res., 52, 993 (2013). https://doi.org/10.1021/ie202870y
  8. H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville and P. Ryser, ACS Nano, 3, 924 (2009). https://doi.org/10.1021/nn8008728
  9. S. Ji, L. Wan, C. C. Liu and P. F. Nealey, Prog. Polym. Sci., 54-55, 76 (2016). https://doi.org/10.1016/j.progpolymsci.2015.10.006
  10. C. Cummins, T. Ghoshal, J. D. Holmes and M. A. Morris, Adv. Mater., 28, 5586 (2016). https://doi.org/10.1002/adma.201503432
  11. M. Luo and T. H. Epps, Macromolecules, 46, 7567 (2013). https://doi.org/10.1021/ma401112y
  12. B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li and A.-C. Shi, Phys. Rev. Lett., 96, 138306 (2006). https://doi.org/10.1103/PhysRevLett.96.138306
  13. B. Yu, B. Li, Q. Jin, D. Ding and A.-C. Shi, Soft Matter, 7, 10227 (2011). https://doi.org/10.1039/c1sm05947e
  14. C. T. Bezik, G. P. Garner and J. J. De Pablo, Macromolecules, 51, 2418 (2018). https://doi.org/10.1021/acs.macromol.7b02639
  15. T. Higuchi, A. Tajima, K. Motoyoshi, H. Yabu and M. Shimomura, Angew. Chemie. Int. Ed., 47, 8044 (2008). https://doi.org/10.1002/anie.200803003
  16. J. M. Shin, M. P. Kim, H. Yang, K. H. Ku, S. G. Jang, K. H. Youm, G. R. Yi and B. J. Kim, Chem. Mater., 27, 6314 (2015). https://doi.org/10.1021/acs.chemmater.5b02020
  17. R. Deng, F. Liang, W. Li, Z. Yang and J. Zhu, Macromolecules, 46, 7012 (2013). https://doi.org/10.1021/ma401398h
  18. L. S. Grundy, V. E. Lee, N. Li, C. Sosa, W. D. Mulhearn, R. Liu, R. A. Register, A. Nikoubashman, R. K. Prud'homme, A. Z. Panagiotopoulos and R. D. Priestley, ACS Nano, 12, 4660 (2018). https://doi.org/10.1021/acsnano.8b01260
  19. F. Rose, J. Bosworth, E. Dobisz and R. Ruiz, Nanotechnology, 22, 350603 (2011).
  20. J. Y. Kim, B. H. Kim, J. O. Hwang, S.-J. Jeong, D. O. Shin, J. H. Mun, Y. J. Choi, H. M. Jin and S. O. Kim, Adv. Mater., 25, 1331 (2013). https://doi.org/10.1002/adma.201204131
  21. J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. Chae and Y. S. Jung, Adv. Mater., 24, 3526 (2012). https://doi.org/10.1002/adma.201200356
  22. A. Rahman, P. W. Majewski, G. Doerk, C. T. Black and K. G. Yager, Nat. Commun., 7, 13988 (2016). https://doi.org/10.1038/ncomms13988
  23. I. Manners, R. A. Register, R. L. Davis, A. Nunns, S. Y. Kim, J. Gwyther and P. M. Chaikin, Nano Lett., 14, 5698 (2014). https://doi.org/10.1021/nl502416b
  24. S. K. Cha, D. Yong, G. G. Yang, H. M. Jin, J. H. Kim, K. H. Han, J. U. Kim, S.-J. Jeong and S. O. Kim, ACS Appl. Mater. Interfaces, 11, 20265 (2019). https://doi.org/10.1021/acsami.9b03632
  25. J. Y. Kim, B. H. Kim, J. O. Hwang, S.-J. Jeong, D. O. Shin, J. H. Mun, Y. J. Choi, H. M. Jin and S. O. Kim, Adv. Mater., 25, 1331 (2013). https://doi.org/10.1002/adma.201204131
  26. N. L. Y. Wu, X. Zhang, J. N. Murphy, J. Chai, K. D. Harris and J. M. Buriak, Nano Lett., 12, 264 (2012). https://doi.org/10.1021/nl203488a
  27. D. Sundrani, S. B. Darling and S. J. Sibener, Nano Lett., 4, 273 (2004). https://doi.org/10.1021/nl035005j
  28. H. Yabu, T. Higuchi and H. Jinnai, Soft Matter, 10, 2919 (2014). https://doi.org/10.1039/c3sm52821a
  29. S. Y. Yang, I. Ryu, H. Y. Kim, J. K. Kim, S. K. Jang and T. P. Russell, Adv. Mater., 18, 709 (2006). https://doi.org/10.1002/adma.200501500
  30. J. Chai, D. Wang, X. Fan and J. M. Buriak, Nat. Nanotechnol., 2, 500 (2007). https://doi.org/10.1038/nnano.2007.227
  31. N. Materials, S. I. Synthesis and B. C. Templates, ACS Nano, 5, 4600 (2011). https://doi.org/10.1021/nn2003234