DOI QR코드

DOI QR Code

Effect of Gelling Agent Molecular Weight on Self-Discharge Behavior for Zinc-Air Batteries

아연-공기 전지용 전해질의 Gelling Agent 분자량에 따른 자가 방전 억제 효과

  • Park, Jeong Eun (Department of Advanced Material & Chemical Engineering, College of Engineering, Halla university) ;
  • Jo, Yong Nam (Department of Advanced Material & Chemical Engineering, College of Engineering, Halla university)
  • 박정은 (한라대학교 공과대학 신소재화학공학과) ;
  • 조용남 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2019.11.08
  • Accepted : 2019.11.29
  • Published : 2019.12.27

Abstract

A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.

Keywords

References

  1. D. R. Chang, E. Y. Jeong and H. S. Kim, Korean J. Mater. Res., 17, 278 (2007). https://doi.org/10.3740/MRSK.2007.17.5.278
  2. E. J. Lee, S. H. Kwon, P. R. Choi, J. C. Jung and M. S. Kim, Korean J. Mater. Res., 24, 285 (2014). https://doi.org/10.3740/MRSK.2014.24.6.285
  3. D. W. Kim and H. Y. Jung, Korean J. Mater. Res., 29, 121 (2019). https://doi.org/10.3740/MRSK.2019.29.2.121
  4. J. I. Moon, H. C. Cho and J. H. Song, Korean J. Mater. Res., 22, 346 (2012). https://doi.org/10.3740/MRSK.2012.22.7.346
  5. D. Y. Lee, J. W. Lee, G. H. An, D. H. Riu and H. J. Ahn, Korean J. Mater. Res., 26, 258 (2016). https://doi.org/10.3740/MRSK.2016.26.5.258
  6. S. H. Ji, W. T. Jo, H. H. Kim and H. J. Kim, Korean J. Mater. Res., 28, 337 (2018). https://doi.org/10.3740/MRSK.2018.28.6.337
  7. V. Caramia and B. Bozzini, Mater. Renew. Sustain. Energ., 3, 28 (2014). https://doi.org/10.1007/s40243-014-0028-3
  8. A. R. Mainar, J. Energy Storage, 15, 304 (2018). https://doi.org/10.1016/j.est.2017.12.004
  9. B.T. Hang and D.H. Thang, J. Electroanal. Chem., 762, 59 (2016). https://doi.org/10.1016/j.jelechem.2015.12.012
  10. A. Inoishi, Y. W. Ju, S. Ida and T. Ishihara, Chem. Comm., 49, 4691 (2013). https://doi.org/10.1039/c3cc40880a
  11. V. Kapali, S. V. Iyer, V. Balaramachandran, K. B. Sarangapani, M. Ganesan, M. A. Kulandainathan and A. S. Mideen, J. Power Sources, 39, 263 (1992). https://doi.org/10.1016/0378-7753(92)80147-4
  12. D. W. Kim and H. Y. Jung, Korean J. Mater. Res., 28, 43 (2018). https://doi.org/10.3740/MRSK.2018.28.1.43
  13. Y. N. Jo, S. H. Kang, K. Prasanna, S. W. Eom and C. W. Lee, Appl. Surf. Sci., 422, 406 (2017). https://doi.org/10.1016/j.apsusc.2017.06.033
  14. Y. Li and H. Dai, Chem. Soc. Rev., 43, 5257 (2014). https://doi.org/10.1039/C4CS00015C
  15. D. Linden and T. B. Reddy, Handbook of Batteries, 3rd ed., p. 1454, McGraw-Hill Companies Inc., New York, (2001).
  16. L. Z. Vorkapic, D. M. Drazic and A. R. Despic, J. Electrochem. Soc., 121, 1385 (1974). https://doi.org/10.1149/1.2401695