DOI QR코드

DOI QR Code

The Application of Direct Water Quenching Process in Hot Stamping of Boron Steels

보론강 판재 핫스탬핑시 직수분사냉각 공정의 적용성

  • Park, Hyeon Tae (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Kwon, Eui Pyo (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Im, Ik-Tae (Department of Mechanical Design Engineering, Jeonbuk National University)
  • 박현태 (한국생산기술연구원 탄소경량소재응용그룹) ;
  • 권의표 (한국생산기술연구원 탄소경량소재응용그룹) ;
  • 임익태 (전북대학교 기계설계공학과)
  • Received : 2019.10.29
  • Accepted : 2019.12.01
  • Published : 2019.12.27

Abstract

In this study, the direct water quenching technique is applied to validate the applicability of direct water quenching as a cooling method in the hot stamping process of 3.2 mm thick boron steel sheet. Cooling performance of conventional die quenching and direct water quenching is compared. Higher cooling rate is obtained by hot stamping with direct water quenching compared to die quenching. As the flow rate of cooling water increases, the cooling rate increases, and a high cooling rate of 71 ℃/s is achieved under flow rate conditions of 0.8 L/min. Through direct water quenching, the cooling time required for sufficient cooling of the sheet is reduced. Full martensitic microstructure is obtained under flow rate condition of 0.8 L/min. Hardness increases with increasing flow rate. From these results, it is verified that the direct water quenching is applicable to the hot stamping of thick boron steel sheet.

Keywords

References

  1. H. Karbasian and A. E. Tekkaya, J. Mater. Process. Technol., 210, 2103 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.019
  2. M. Naderi, M. Ketabchi, M. abbasi and W. bleck, J. Mater. Sci. Technol., 27, 369 (2011). https://doi.org/10.1016/S1005-0302(11)60076-5
  3. M. Merklein, J. Lechler. J. Mater. Process. Technol., 177, 452 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.233
  4. J. Zhou, B. Wang, M. Huang and D. Cui. J. Mater. Int., 21, 544 (2014).
  5. M. Muro, G. Artola, A. Gorrino and C. Angulo, Metals, 8, 385 (2018). https://doi.org/10.3390/met8060385
  6. H. Fuckuchi and N. Nomura, Nippon Steel & Sumitomo Metal Technical Report, 112, (2016).
  7. S. Kim and H. Kong, J. Welding and Joining, 33, 36 (2015). https://doi.org/10.5781/JWJ.2015.33.6.36
  8. T. Maeno, K. I. Mori and M. Fujimoto, CIRP Annals Manuf. Technol., 64, 281 (2015). https://doi.org/10.1016/j.cirp.2015.04.128
  9. K. Mori, P. F. Bariani, B.-A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein and J. Yanagimoto, CIRP Annals Manuf. Technol., 66, 755 (2017). https://doi.org/10.1016/j.cirp.2017.05.007
  10. P. Namklang, V. Uthaisangsuk, J. Manuf. Processes, 21, 87 (2016). https://doi.org/10.1016/j.jmapro.2015.11.008
  11. B. C. Hwang, Korean J. Mater. 25, 497 (2015). https://doi.org/10.3740/MRSK.2015.25.9.497
  12. S. I. Lee, Y. Cho and B. C. Hwang, Korean J. Mater., 26, 325 (2016). https://doi.org/10.3740/MRSK.2016.26.6.325
  13. R. Neugebauer, T. Altan, M. Geiger, M. Kleiner and A. Sterzing, CIRP. Annals., 55, 793 (2006). https://doi.org/10.1016/j.cirp.2006.10.008
  14. B. F, B. Gonzalez, G. Artola, N. Lopez de Lacalle and C. Angulo, Metals, 9, 235 (2019). https://doi.org/10.3390/met9020235