DOI QR코드

DOI QR Code

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx

대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성

  • Cho, Seo-Hee (Department of Aerospace Engineering, Sunchon National University) ;
  • Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 조서희 (순천대학교 우주항공공학과) ;
  • 이기만 (순천대학교 기계.우주항공공학부)
  • Received : 2019.11.13
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

저공해 연소를 위한 방법 중 하나인 배기가스 재순환(flue gas recirculation, 이하 FGR)은 질소산화물 저감에 효과적인 연소 기법이다. 이를 메탄/공기 대향류 예혼합화염에 적용하여 화염의 특성변화와 NOx 생성 기구를 파악하기 위한 수치해석을 진행하였다. 신장률에 따라 배출되는 생성물들의 몰분율이 달라진다는 점을 고려하여 재순환율은 생성물을 기준으로 정의되었으며, 실제 연소 시스템을 반영하기 위해 주요 생성물인 CO2, H2O, O2 그리고 N2를 희석제로써 재순환하였다. FGR 기법이 적용됨에 따라 특정한 신장률 조건에서 최대화염 온도의 전환점이 발견되었다. 또한, 재순환율이 증가함에 따라 온도와 NO의 경향이 달리 나타났으며, 이를 파악하고자 NO 반응을 열적 NO와 Fenimore NO로 구분하여 분석하였다.

Keywords

References

  1. A, F., Sarofim, R. C., Flagan, "NOx Control for Stationary Combustion Sources", Prog. Energy. Combust. Sci., 2, 1-25, (1976) https://doi.org/10.1016/0360-1285(76)90006-X
  2. W., Li, Z., Liu, Z., Wang, Y., Xu, J., Wang, "Experimental and theoretical analysis of dffects of $N_2$, $O_2$ and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine", Energy Conversion and Management., 97, 253-264, (2015) https://doi.org/10.1016/j.enconman.2015.03.079
  3. S. C., Li, and F. A., Williams, "NOx Formation in Two-Stage Methane-Air Flames", Combustion and Flame, 118, 399-414, (1999) https://doi.org/10.1016/S0010-2180(99)00002-4
  4. Y., He, C., Zou, Y., Song, Y., Liu, C., Zheng, "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)", Energy, 112, 1024-1035, (2016) https://doi.org/10.1016/j.energy.2016.07.020
  5. S. J., Zhu, Q. G., Lyu, J. G., Zhu, J. R., Li, "NO emissions under pulverized char MILD combustion in $O_2$/$CO_2$ preheated by a circulating fluidized bed: Effect of oxygen-staging gas distribution", Fuel Processing Technology, 182, 104-112, (2018) https://doi.org/10.1016/j.fuproc.2018.09.002
  6. H. K., Kim, Y. M., Kim, S. M., Lee, K.Y., Ahn, "NO reduction in 0.03-0.2 MW oxy-fuel combustor using flue gas recirculation technology", Proceedings of the Combustion Institute, 31, 3377-3384, (2007) https://doi.org/10.1016/j.proci.2006.08.083
  7. Y., Tu, A., Zhou, M., Xu, W., Yang, K. B., Siah, P., Subbaiah, "NOx reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology", Applied Energy, 220, 962-973, (2018) https://doi.org/10.1016/j.apenergy.2017.12.018
  8. Moorman, R. J., and Long, C. H., "Design, Development and testing of a Swirl Type Gas Burner With Fuel Gas Recirculation for NOx Control," ASME 73-PWR-21, 1-9, (1973)
  9. J. A., Wunning, J. G., Wunning, "Flameless Oxidation to Reduce Thermal NO-formation", Prog. Energy. Combust. Sci., 23, 81-94, (1997) https://doi.org/10.1016/S0360-1285(97)00006-3
  10. J., Baltasar, M. G., Carvalho, P., Coelho, M., Costa, "Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling", Fuel, 76(10), 919-929, (1997) https://doi.org/10.1016/S0016-2361(97)00093-8
  11. J. M., BeeR, "Low NOx Burners for Boilers, Furnaces and Gas Turbines; Drive Towards the Lower Bounds of NOx Emissions", Combust. Sci. and Tech., 2, 169-191,(1996) https://doi.org/10.1080/00102209608935593
  12. B., Shi, J., Hu, H., Peng, S., Ishizuka, "Effects of internal flue gas recirculation rate on the NOx emission in a methane/air premixed flame", Combustion and Flame, 188, 199-211, (2018) https://doi.org/10.1016/j.combustflame.2017.09.043
  13. A. C. A., Lipardi, P., Versailles, G. M. G., Watson, G., Bourque, J. M., Bergthorson, "Experimental and numerical study on NOx formation in CH4-air mixtures diluted with exhaust gas components", Combustion and Flame, 179, 325-337, (2017) https://doi.org/10.1016/j.combustflame.2017.02.009
  14. J. J., Feese, S. R., Turns, "A Study of NOx Reduction by Fuel Injection Recirculation". Master. Dissertation, The Pennsylvania State University, (1996)
  15. J., Park, O. B., Kwon, S. W., Kim, C. Y., Lee, S. I., Keel, J. H., Yun, I. G., Lim, "A Study on Flame Structure and NO Emission in FIRand FGR-applied Methane-air Counterflow Diffusion Flames", J. Korean Soc. Combust., 21(1), 38-45, (2016) https://doi.org/10.15231/jksc.2016.21.1.038
  16. Stephen R. Turns, "An Introduction to Combustion Concepts and Applications", McGraw-Hill, third edition, 363-370, (2012)
  17. E. S., Cho, S. H., Chung, "Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides", Journal of Mechanical Science and Technology (KSME Int. J.), 19(6), 1358-1365, (2005) https://doi.org/10.1007/BF02984056
  18. R. J., Kee, J. A., Miller, G. H., Evans, "A Computational Model of The Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames", Proc Combust Inst, 22, 1479-1494, (1988)
  19. A. E., Lutz, R. J., Kee, J. F., Grcar, F. M., Rupley, "A Fortran program for computing opposed- flow diffusion flames", Sandia National Laboratories Report, SAND 96-8243, (1997)
  20. Y., Ju, H., Guo, K., Maruta, F., Liu, "On the extinction limit and flammability limit of nonadiabatic stretched methane-air premixed flames", J. Fluid Mech., 342, 315-334, (1997) https://doi.org/10.1017/S0022112097005636
  21. "Chemical-Kinetic Mechanisms for Combustion Applications", Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, http://combustion. ucsd.edu/, (2014)
  22. J., Park, J. S., Kim, J. O., Chung, J. H., Yun, S. I., Keel, "Chemical effects of added $CO_2$ on the extinction characteristics of $H_2$/CO/$CO_2$ syngas diffusion flames", International Journal of Hydrogen Energy, 34, 8756-8762, (2009) https://doi.org/10.1016/j.ijhydene.2009.08.046
  23. S. W., Jung, J., Park, O. B., Kwon, Y. J., Kim, S. I., Keel, J. H., Yun, I. G., Lim, "Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames", Fuel, 136, 69-78, (2014) https://doi.org/10.1016/j.fuel.2014.07.009
  24. J. J., Feese, S. R., Turns, "Nitric Oxide Emissions from Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition", Combustion and Flame, 113(1-2), 66-78, (1998) https://doi.org/10.1016/S0010-2180(97)00217-4
  25. E. S., Cho, S. H., Chung, "Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides", KSME International Journal, 18(12), 2303-2309, (2004) https://doi.org/10.1007/BF02990235
  26. Maruta, K., Yoshida, M., Guo, H., Ju, Y., and Niioka, T., "A Computational Study of Flame Radiation in PMMA Diffusion Flames Including Fuel Vapor Participation", Combust. Flam., 112, 181-187, (1998) https://doi.org/10.1016/S0010-2180(97)81766-X
  27. G. A., Lavoie, J. B., Heywood, J. C., Keck, "Experimental and Thoretical Study of Nitric Oxide Formation in Internal Combustion Engines", Combustion Science and Technology, 1, 313-326, (1970) https://doi.org/10.1080/00102206908952211
  28. M. Nishioka, S., Nakagawa, Y., Ishikawa, T., Takeno, "NO Emission Characteristics of Methane-Air Double Flame", Combustion and Flame, 98, 127-138, (1994) https://doi.org/10.1016/0010-2180(94)90203-8
  29. C. P., Fenimore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames", Symposium (International) on Combustion, 13(1), 373-380, (1971)
  30. C. K., Westbrook, F L., Dryer "Chemical Kinetic Modeling of Hydrocarbon Combustion", Prog. Energy Combustion. Sci, 10, 1-57, (1984) https://doi.org/10.1016/0360-1285(84)90118-7
  31. J. Kojima, Y. Ikeda, T. Nakajima, "Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames", Proceedings of the Combustion Institute, 28, 1757-1764, (2000) https://doi.org/10.1016/S0082-0784(00)80577-9