DOI QR코드

DOI QR Code

A Development of Consequence Analysis System for Combustible Materials Release Events Based on HTML5 Web

HTML5 웹 기반 가연성 물질 누출 피해영향평가 시스템 개발

  • Lee, Ugwiyeon (Dept. of Disaster Management, Korea Gas Safety Corporation) ;
  • Ji, Hyunmin (Dept. of System Research, Institute of Gas Safety R&D) ;
  • Oh, Jeongseok (Dept. of System Research, Institute of Gas Safety R&D) ;
  • Cho, Wansu (Dept. of Disaster Management, Korea Gas Safety Corporation)
  • 이우귀연 (한국가스안전공사 재난관리처) ;
  • 지현민 (가스안전연구원 시스템연구부) ;
  • 오정석 (가스안전연구원 시스템연구부) ;
  • 조완수 (한국가스안전공사 재난관리처)
  • Received : 2019.11.22
  • Accepted : 2019.12.21
  • Published : 2019.12.31

Abstract

Korea Gas Safety Corporation is developing consequence analysis system for combustible materials release events to enhance risk assessment technology and its efficiency. Unlike general consequence analysis programs, the final consequence area was implemented through ETA analysis based on API-581 standard, and a convenient user interface was constructed based on HTML5-based responsive web technology. In addition, a phase equilibrium module using third-order state equations (such as Peng-Robinson, SRK, and RK) and fugecity was implemented to analyze the mixture quality. Also. using the consequence analysis algorithm introduced in CCPS books and TNO Yellow Book, we developed material leak analysis module, fireball, pool fire, jet fire, flash fire, and vapor cloud explosion consequence assessment module. In addition, the conditions for calculating the safety distance were prepared with using the control values in the EIGA standard, PAC, and Bevi Reference Book.

한국가스안전공사는 진단 기반기술 국산화와 진단 역량 강화를 위해 자체적인 피해영향평가 시스템을 구축하고 있다. 유사 프로그램인 DNV PHAST나 TNO EFFECTS와 달리, API-581 기준을 근간한 ETA 분석을 통해 최종 피해영역 산출 기법을 구현하였으며, HTML5 기반 차세대 웹 기술을 기반으로 편리한 사용자 인터페이스를 구축하였다. 또한, 혼합물질 분석이 가능하도록 3차 상태방정식(Peng-Robinson, SRK, RK)과 퓨게시티를 활용한 상평형 모듈이 구현되었고, 공기보다 무거운 가스에 대한 확산 분석을 위해 SLAB Dispersion 알고리즘을 적용하였다. CCPS와 TNO Yellow Book에서 소개된 피해영향평가 알고리즘을 채용하여 누출분석 모듈, Fireball, Pool Fire, Jet Fire, Flash Fire, Vapor Cloud Explosion 영향 평가 모듈을 개발하였다. 그 외 EIGA 기준, PAC 기준 농도, Bevi Reference Book 등에서 제시된 기준 값들을 활용하여 안전거리 산출 조건을 마련하였다. 현재 전체 계산 모듈의 알고리즘 구현은 완료되었으며, 기본적인 사용자인터페이스 구축까지 완료되었다. 향후, 사용자 인터페이스 보완과 더불어, 모듈 각각에 대한 개별적인 검증과 동일한 사고 시나리오에 대한 유사 프로그램 구동 결과를 비교하여 전체 시스템의 정확도를 보완할 예정이다.

Keywords

References

  1. American Petroleum Institute, Risk-based Inspection Technology, API Recommended Practice 581 2nd Edition, (2008)
  2. Koos Ham, Alessia Marangon, Prankul Middha at el, "Benchmark exercise on risk assessment methods applied to a virtual hydrogen refuelling station", International Journal of Hydrogen Energy, Volume 36(3), 2666-2677, (2011) https://doi.org/10.1016/j.ijhydene.2010.04.118
  3. Ga-Young Jo, Ik-Mo Lee, Yong-Woo Hwang, Jin-Young Moon, A Study on the Simulation of Damage Distance for Toxic Substances Leakage, Journal of the Korea Academia-Industrial Cooperation Society, 18(4), 599-607, (2017) https://doi.org/10.5762/KAIS.2017.18.1.599
  4. D.C.Thoman, K.R O'Kula, J.C. Laul et al, "Comparison of ALOHA and EPIcode for Safety Analysis Applications", Journal of Chemical Health and Safety, 13(6), 20-33, (2006) https://doi.org/10.1016/j.jchas.2006.02.003
  5. American Institute of Chemical Engineers, Guidelines for Consequence Anlaysis of Chemical Releases, Center for chemical process safety, ISBN 0-8169-0786-2, (1999)
  6. Carl L. Yaws, Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, McGraw-Hill, (2003)
  7. Shah A. A. K., Zainuddin A. M., Haslenda H., Sharifah R. W. A., "Design of green diesel from biofuels using computer aided technique", Computers and Chemical Engineering, 41, 88-92, (2012) https://doi.org/10.1016/j.compchemeng.2012.03.006
  8. Louis S., Jeroen V., Joachim D., Jonas G., and Sebastian V., "Alternative Fuels for Spark-Ignition Engines: Mixing Rules for the Laminar Burning Velocity of Gasoline-Alcohol Blends", American Chemical Society, Energy Fuels, 26(8), 4721-4727, (2012) https://doi.org/10.1021/ef300393h
  9. Mukund R. Patel and Philip T.Eubank, "Experimental densities and derived thermodynamic properties for carbon dioxide-water mixtures", Journal chemical & engineering data, 33(2), 185-193, (1988) https://doi.org/10.1021/je00052a037
  10. Jean-Noel Jaubert, Romain Privat,"Relationship between the binary interaction parameters (kij) of the Peng-Robinson and those of the Soave-Redlich-Kwong equations of state: Application to the definition of the PR2SRK model", Fluid Phase Equilibria, 295(1), 26-37, (2010) https://doi.org/10.1016/j.fluid.2010.03.037
  11. K. S. Pedersen, P. Thomassen, AA. Fredenslund, "SRK-EOS Calculation for Crude Oils", Fluid Phase Equilibria, 14, 209-218, (1983) https://doi.org/10.1016/0378-3812(83)80127-7
  12. Hendrick C Van Ness, Michael Abbott, Mark Swihart at el., Introduction to Chemical Engineering Thermodynamics, McGraw-Hill Education, Technology & Engineering, ISBN:1259696529, (2017)
  13. Dong Yuhua, Gao Huilin, Zhou Jing'en at el, "Evaluation of gas release rate through holes in pipelines", Journal of Loss Prevention in the Process Industries 15(6), 423-428, (2002) https://doi.org/10.1016/S0950-4230(02)00041-4
  14. Kingsley E. Abhulimen, Alfred A. Susu, "Liquid pipeline leak detection system: model development and numerical simulation", Chemical Engineering Journal, 97(1), 47-67, (2004) https://doi.org/10.1016/S1385-8947(03)00098-6
  15. C.L. Hollingshead, M.C. Johnson, S.L. Barfuss, "Discharge coefficient performance of Venturi, standard concentric orifice plate, V-cone and wedge flow meters at low Reynolds numbers", Journal of Petroleum Science and Engineering, 78(3-4), 559-566, (2011) https://doi.org/10.1016/j.petrol.2011.08.008
  16. TNO(The Netherlands Oranization of Applied Scientific Research), Methods for the calculation of physical effects - due to releases of hazardous materials(liquid and gases 3rd edition, Ministerie van Verkeer en Waterstaat, (2005)
  17. Zhang Miao, Song Wenhua, Wang Ji at el, "Accident consequencesimulation analysis of pool fire in fire dike", International Symposium on Safety Science and Technology(ISSST), Procedia Engineering 84, 565-577, (2014)
  18. Renato Benintendi, Process Safety Calculation, ELSEVIER, Book Aid International, ISBN: 9780081012284, (2018)
  19. Donald L. Ermak, User's Manual for SLAB: An atmospheric dispersion model for denser-than-air releases, Lawrence Livermore National Laboratory, UCRL-MA-105607, (1990)
  20. Morgan, D.L. Jr., Morris, L.K., Ermak, D.L., SLAB: a time-dependent computer model for the dispersion of heavy gases released in the atmosphere, Lawrence Livermore National Lab., CA (USA), (1983)
  21. Eivind Netland Ekerold, "Interpretation of geometrical effects in consequence modelling. Comparison study between the commercial consequence assessment tools FLACS and PHAST for flammable gas dispersion", Department of Physics and Techology, University of Bergen, Bergen Norway, (2014)
  22. Robin Pitblado, John Baik, Vijay Raghunathan, "LNG decision making approaches compared", Journal of Hazardous Materials 130(1-2), 148-154, (2006) https://doi.org/10.1016/j.jhazmat.2005.07.081
  23. R. Pula, F.I.Khan, B. Veitch at el, "A Grid Based Approach For Fire and Explosion Consequence Analysis", Process Safety and Environmental Protection, 84(2), 79-91, (2006) https://doi.org/10.1205/psep.05063
  24. A. M. Birk, "Hazards from propane BLEVEs: An update and proposal for emergency responders", J. Loss Prev, Process lnd, 9(2), 173-181, (1996) https://doi.org/10.1016/0950-4230(95)00046-1
  25. Behrouz Hemmatian, Eulalia Planas, Joaquim Casal, "Fire as a primary event of accident domino sequences: The case of BLEVE", Reliability Engineering and System Safety, 139, 141-148, (2015) https://doi.org/10.1016/j.ress.2015.03.021
  26. "View Factor" Definition, WIKIPEDIA, https://en.wikipedia.org/wiki/View_factor, last edited on (2019)
  27. Biao Sun, Kaihua Guo, Vishnu K. Pareek, "Computational fluid dynamics simulation of LNG pool fire radiation for hazard analysis", Journal of Loss Prevention in the Process Industies 29, 92-102, (2014) https://doi.org/10.1016/j.jlp.2014.02.003
  28. Muhammad Masum Jujuly, Aziz Rahman, Salim Ahmed at el, "LNG pool fire simulation for domino effect analysis", Reliability Engineering and System Safety, 143, 19-29, (2015) https://doi.org/10.1016/j.ress.2015.02.010
  29. P. J. Rew and W. G. Hulbert, Development of Pool Fire Thermal Radiation Model, W S Atkins Safety and Reliability, Woodcote Grove, Ashley, Epsom, Surrey KT18 5BW, RoadHSE Contract Research Report No. 96/1996, (1996)
  30. A. Palacios, M. Munoz, R.M. Darbra at el, "Thermal Radiation from Vertical Jet Fires", Fire Safety Journal, 51, 93-101, (2012) https://doi.org/10.1016/j.firesaf.2012.03.006
  31. Quentin A. B., Ming J.T., Ephraim A. S. at el, "Vapor Cloud Explosion Analysis", Process Safety Process, 15(2), https://doi.rog/10.1002/prs.680150211, (1996)
  32. Sengho Jung, "Facility siting and plant layout optimization for chemical process safety", Koren J. Chem. Eng., 33, 1-7, (2016) https://doi.org/10.1007/s11814-015-0242-4
  33. J.M Tseng, T.S. Su, C.Y.Kuo, "Consequence evaluation of toxic chemical releases by ALOHA", Procedia Engineering, 45, 384-389, (2012) https://doi.org/10.1016/j.proeng.2012.08.175
  34. EIGA IGC Doc 75/07/E, "Determination of Safety Distances", European Industrial Gases Association Aisbl, http://www.eiga.org, (2007)
  35. EPA 745-B-19-019, "Toxic Release Inventory - Guidance for Reporting the Polycyclic Aromatic Compounds Category", United States Environmental Protection Agency, (2019 revised)
  36. Nima Khakzad, Faisal Khan, Paul Amyotte, "Dynamic risk analysis using bow-tie approach", Reliability Engineering and System Safety, 104, 36-44, (2012) https://doi.org/10.1016/j.ress.2012.04.003
  37. Hyun Lock Choo, Sanghwan Oh, Jonghun Jung at el, "The Behavior-Based Analysis Techniques for HTML5 Malicious Features", International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), https://doi.org/10.1109/IMIS.2015.67, (2015)
  38. Luc Patiny, Alain Borel, "ChemCalc: A Building Block for Tomorrow's Chemical Infrastructure", Journal of Chemical Information and Modeling, 53(5), 1223-1228, (2013) https://doi.org/10.1021/ci300563h