DOI QR코드

DOI QR Code

Risk Assessment of Highly Pathogenic Avian Influenza by Comparison of Biosecurity Level in Domestic Poultry Farms

국내 가금농장의 차단방역수준비교에 따른 고병원성 조류인플루엔자 발생 위험도 평가

  • So, Hyun Hee (College of Veterinary Medicine, Chungbuk National University) ;
  • Bae, Yeonji (College of Veterinary Medicine, Chungbuk National University) ;
  • Mo, Inpil (College of Veterinary Medicine, Chungbuk National University)
  • 소현희 (충북대학교 수의과대학 수의학과) ;
  • 배연지 (충북대학교 수의과대학 수의학과) ;
  • 모인필 (충북대학교 수의과대학 수의학과)
  • Received : 2019.12.02
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

In most cases of HPAI (highly pathogenic avian influenza) outbreaks, stamping-out operations are initiated by officially designating the affected premise, which is subsequently followed by depopulation of infected flocks. The primary objective of this study was to develop an evaluation method that correlates the level of biosecurity and the risk of having an HPAI outbreak in domestic poultry farms. A total of eight farms were selected nationwide, including layer farms, broiler farms, and an animal welfare type farm. The biosecurity level of the chosen poultry farms was assessed based on a total scoring index of 183 divided into three categories, general management (51), quarantine management (106), and sanitation management (26). Conclusively, the five layer farms (JS, GE, CS, HS, OE), scored higher overall scores compared to the animal welfare farm (CH) and broiler farms (JG, LB). In terms of scoring, which adds up to a total of 183 points, most layer farms scored between 130 and 157, while the two broiler farms and the welfare farm scored 45, 75 and 70, respectively. Next, an independent HPAI risk assessment of the farms was carried out. Regarding the correlation between biosecurity levels and HPAI risks, in the farms that presented a higher overall score in terms of biosecurity and outweighed the risks of HPAI, they tended to earn more points in the quarantine management category. The results of this study suggest that a viable system for evaluating biosecurity levels can establish strong correlations with the risk of having HPAI.

일반적으로 고병원성 조류인플루엔자(HPAI; highly pathogenic avian influenza)가 발생을 하면 일정한 방역지역을 선정하여 그 범위 내의 농장에 대해서는 일괄적 살처분을 진행한다. 그러나 이러한 살처분은 산업에 막대한 경제적 손실을 줄 수 있지만, 방역 범위를 줄이게 되면 수평전파의 위험성이 커지게 된다. 따라서 본 연구에서는 국내 가금농장의 차단 방역 수준과 HPAI 발생 위험도를 측정할 수 있는 방법을 마련하고, HPAI가 발생 시 방역지역에 포함된 농장들을 선별적으로 살처분을 할 수 있는 방안을 마련하고자 수행하였다. 국내 가금농장의 계종, 규모, 지역에 따라 전국적으로 8개의 농장을 선정하였으며, 일반관리 51항목, 방역관리 106항목, 위생관리 26항목으로 총 183 항목으로 나누어 차단 방역 수준을 평가하였다. 전반적으로 산란계 농장인 5개 농장(JS, GE, CS, HS, OE)이 복지농장 (CH), 육계농장(JG, LB)보다 종합적으로 높은 수준의 점수를 획득하였다. 산란계 농장은 대부분 130점에서 157점 사이에 있는 반면, 육계농장은 45점과 75점이었으며, 복지농장은 70점 수준으로 농장간 차단 방역 수준 편차가 심하였다. 평상시 가금농장의 HPAI 발생의 위험도도 일반관리, 방역 관리, 위생관리로 나누어 평가한 후 기존의 각 농장별 현재의 차단 방역수준과 서로 비교하였다. 현재의 차단 방역 수준이 HPAI 발생 위험도보다 높은 수준의 농장의 경우 대부분이 3개 관리 분야 중 방역 관리가 뛰어나다는 공통점이 있었으며, HPAI 발생 위험도가 현재의 차단 방역 수준을 능가하는 경우에는 대부분 3개 분야의 관리가 전반적으로 취약하였지만, 특히 방역 관리수준이 매우 낮은 점수를 취득하였다. 이와 같이 본 연구에서 제시한 가금농장의 차단 방역 수준 평가를 위한 항목들을 활용을 하면 현재 가금농장의 차단 방역 수준을 평가할 수 있을 뿐 아니라, HPAI 발생에 대한 위험도를 추정할 수 있다. 따라서, 이러한 위험도 평가를 HPAI 발생시 방역 지역 내 농장에 다른 요소들과 함께 적용을 한다면 선택적 살처분의 가능성도 높아질 것으로 판단된다.

Keywords

References

  1. Allepuz A, Martin-Valls GE, Casal J, Mateu E 2018 Development of a risk assessment tool for improving biosecurity on pig farms. Prev Vet Med 153(1):56-63. https://doi.org/10.1016/j.prevetmed.2018.02.014
  2. Animal and Plant Quarantine Agency 2004 Official Epidemiological Report for Avian Influenza 2003-2004 (In Korean). Available from: http://lib.qia.go.kr/LibtechUpload/Book/B200600022.pdf. Accessed September 20, 2019.
  3. Animal and Plant Quarantine Agency 2011 Official Epidemiological Report for Avian Influenza 2010-2011 (In Korean). Available from: http://lib.qia.go.kr/LibtechUpload/Book/B20110209-1.pdf. Accessed September 20, 2019.
  4. Animal and Plant Quarantine Agency 2015 Practical Manual on Animal Disease Epidemiology (1.0) High Pathogenic Avian Influenza (HPAI) (In Korean). Available from: http://lib.qia.go.kr/LibtechUpload/Book/B20150811-02.pdf. Accessed September 20, 2019.
  5. Animal and Plant Quarantine Agency 2017 Official Epidemiological Report for Avian Influenza 2016-2017 (In Korean). Available from: http://lib.qia.go.kr/LibtechUpload/Book/B20180213-01.pdf. Accessed September 20, 2019.
  6. Animal and Plant Quarantine Agency 2018 Official Epidemiological Report for Avian Influenza 2017-2018 (In Korean). Available from: http://lib.qia.go.kr/LibtechUpload/Book/B20181219-01.pdf. Accessed September 20, 2019.
  7. Conan A, Luce FG, Soren S, Vong S 2012 Biosecurity measures for backyard poultry in developing countries: a systematic review. BMC Veterinary Research 8:240-249. https://doi.org/10.1186/1746-6148-8-240
  8. Derksen T, Lampron R, Hauck R, Pitesky M, Gallardo RA 2018 Biosecurity assessment and seroprevalence of respiratory diseases in backyard poultry flocks located close to and far from commercial premises. Avian Dis 62(1): 1-5. https://doi.org/10.1637/11672-050917-Reg.1
  9. FAO 2001 Manual on Procedures for Disease Eradication by Stamping Out. Part 1. Destruction of Animals. Available from: http://www.fao.org/3/y0660e/Y0660E00.htm. Accessed September 20, 2019.
  10. GC 2011 Quality standard of embryonated egg for flu vaccine production. Green Cross. SOP v2-022-3.
  11. Gole VC, Woodhouse R, Caraguel C, Moyle T, Rault JL, Sexton M, Chousalkar K. 2017 Dynamics of Salmonella shedding and welfare of hens in free-range egg production systems. Appl Environ Microbiol 83(5):e03313-16. https://doi.org/10.1128/AEM.03313-16.
  12. GSK 2007 Specification: Quality Assurance Instruction for Pre-hatched Chicken Eggs. GSK. Code No:SP-027.
  13. HACCP 2016 Manual for applying laying hens HACCP (In Korean) Available from: http://hukobio.co.kr/wordpress/wp-content/plugins/uploadingdownloading-non-latin-filename/download.php?id=44329. Accessed September 20, 2019.
  14. Lee CW, Ki M 2015 Strengthening epidemiologic investigation of infectious diseases in Korea: lessons from the middle east respiratory syndrome outbreak. J Korean Med Assoc. 58(8):706-713. https://doi.org/10.5124/jkma.2015.58.8.706
  15. Nam IS, Kim HS, Seo KM, Ahn JH 2014 Analysis of HACCP system implementation on productivity, Advantage and disadvantage of laying hen farm. Korean J Poult Sci 41(2):93-98. https://doi.org/10.5536/KJPS.2014.41.2.93
  16. NPIP 2019 National Poultry Improvement Plan for commercial poultry. Available from: https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=119a83c6b3a4850ff837078ba6eacfa5&r=PART&n=9y1.0.1.7.64. Accessed September 20, 2019.
  17. OIE 2013 Biosecurity procedures in poultry production. Available from: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_biosecu_poul_production.pdf. Accessed September 20, 2019.
  18. OIE 2018 Manual 5. Surveillance and epidemiology. Available from: https://rr-asia.oie.int/fileadmin/SRR_Activities/STANDZ/SEACFMD_Manual/SEACFMD_Manual_5.pdf. Accessed November 20, 2019.
  19. RTFAPS 2017 Red Tractor Farm Assurance Poultry Scheme. Available from: https://assurance.redtractor.org.uk/contentfiles/Farmers-6803.pdf?_=636359681046417894. Accessed September 20, 2019.
  20. Thrush MA, Pearce FM, Gubbins MJ, Oidtmann BC, Peeler EJ 2017 A simple model to rank shellfish farming areas based on the risk of disease introduction and spread. Transbound Emerg Dis 64(4):1200-1209. https://doi.org/10.1111/tbed.12492
  21. Van Limbergen T, Dewulf J, Klinkenberg M, Ducatelle R, Gelaude P, Mendez J, Heinola K, Papasolomontos S, Szeleszczuk P, Maes D 2018 Scoring biosecurity in European conventional broiler production. Poult Sci. 97(1):74-83. https://doi.org/10.3382/ps/pex296
  22. Vizzier Thaxton Y, Christensen KD, Mench JA, Rumley ER, Daugherty C, Feinberg B, Parker M, Siegel P, Scanes CG 2016 Symposium: animal welfare challenges for today and tomorrow. Poult Sci 95(9):2198-2207. https://doi.org/10.3382/ps/pew099