DOI QR코드

DOI QR Code

Occurrence and control of N-nitrosodimethylamine in water engineering systems

  • Bian, Yongning (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Wang, Chuang (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Zhu, Guocheng (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Ren, Bozhi (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology) ;
  • Zhang, Peng (College of Civil Engineering, Hunan University of Science and Technology) ;
  • Hursthouse, Andrew S. (Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology)
  • Received : 2018.01.09
  • Accepted : 2018.05.05
  • Published : 2019.03.31

Abstract

N-nitrosodimethylamine (NDMA) is a typical nitrogen disinfection by-product, which has posed a potential threat to human health during drinking water disinfection. Because of the well-known effects of mutagenesis, carcinogenesis and teratogenesis, the high detection rate in water engineering systems (such as coagulation, membrane filtration and biological systems), and difficulty to remove, it has received wide concern in the field of water engineering systems. The NDMA is a low molecular weight hydrophilic organic substance, which is difficult to remove. Also, the mechanism for NDMA formation is also recognized to be complex, and many steps still needed to be further evaluated. Therefore, the mechanistic knowledge on NDMA formation potential and their removal processes is of particularly interest. Few papers summarize the occurrence and control of NDMA in water engineering systems. It is for this reason that the content of this paper is particularly important for us to understand and control the amount of NDMA thus reducing the threat of disinfection by-products to drinking water. Four parts including the mechanisms for the NDMA formation potential, the factors affecting the NDMA formation potential, the technologies for removal of NDMA are summarized. Finally, some definite suggestions are given.

Keywords

References

  1. Chang Y, Chen Q, Li N, et al. Development tendency of drinking water disinfection based on a bibliometrics analysis. Acta Sci. Circum. 2016;36:413-419.
  2. Tokmak B, Capar G, Dilek FB, Yetis U. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey. Environ. Res. 2004;96:345-352. https://doi.org/10.1016/j.envres.2003.11.005
  3. Chu W, Chu T, Du E, Yang D, Guo Y, Gao N. Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments. Ecotoxicol. Environ. Saf. 2016;124:147-154. https://doi.org/10.1016/j.ecoenv.2015.10.016
  4. Zhang TY, Lin YL, Xu B, et al. Identification and quantification of ineffective chlorine by $NaAsO_2$ selective quenching method during drinking water disinfection. Chem. Eng. J. 2015;277:295-302. https://doi.org/10.1016/j.cej.2015.04.126
  5. Helbling DE, Vanbriesen JM. Free chlorine demand and cell survival of microbial suspensions. Water Res. 2007;41:4424-4434. https://doi.org/10.1016/j.watres.2007.06.006
  6. Fu J, Lee W, Coleman C, Nowack K, Carter J, Huang CH. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 2017;123:224-235. https://doi.org/10.1016/j.watres.2017.06.073
  7. Liu C, Olivares CI, Pinto AJ, et al. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017;124:630-653. https://doi.org/10.1016/j.watres.2017.07.080
  8. Zhang Y, Chu W, Yao D, Yin D. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity. J. Environ. Sci. 2017;58:322-330. https://doi.org/10.1016/j.jes.2017.03.028
  9. Zhang Y, Chu W, Xu T, et al. Impact of pre-oxidation using $H_2O_2$ and ultraviolet/$H_2O_2$ on disinfection byproducts generated from chlor(am)ination of chloramphenicol. Chem. Eng. J. 2017;317:112-118. https://doi.org/10.1016/j.cej.2017.01.119
  10. Zuo TH, Kristiana I, Busetti F, Linge KL, Joll CA. Organic chloramines in chlorine-based disinfected water systems: A critical review. J. Environ. Sci. 2017;58:2-18. https://doi.org/10.1016/j.jes.2017.05.025
  11. Donnermair MM, Blatchley ER 3rd. Disinfection efficacy of organic chloramines. Water Res. 2003;37:1557-1570. https://doi.org/10.1016/S0043-1354(02)00522-5
  12. Lee W, Westerhoff P. Formation of organic chloramines during water disinfection: Chlorination versus chloramination. Water Res. 2009;43:2233-2239. https://doi.org/10.1016/j.watres.2009.02.009
  13. Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 2011;45:944-952. https://doi.org/10.1016/j.watres.2010.09.036
  14. Lyon BA, Dotson AD, Linden KG, Weinberg HS. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment. Water Res. 2012;46:4653-4664. https://doi.org/10.1016/j.watres.2012.06.011
  15. Kanniganti R, Johnson JD, Ball LM, Charles MJ. Identification of compounds in mutagenic extracts of aqueous monochloraminated fulvic acid. Environ. Sci. Technol. 1992;26:1998-2004. https://doi.org/10.1021/es00034a018
  16. Mitch WA, Sedlak DL. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 2002;36:588-595. https://doi.org/10.1021/es010684q
  17. Choi J, Valentine RL. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product. Water Res. 2002;36:817-824. https://doi.org/10.1016/S0043-1354(01)00303-7
  18. Chu W, Gao N, Deng Y, Templeton MR, Yin D. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresour. Technol. 2011;102:11161-11166. https://doi.org/10.1016/j.biortech.2011.09.109
  19. Xu B, Ye T, Li D, et al. Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters. Sci. Total Environ. 2011;409:1116-1122. https://doi.org/10.1016/j.scitotenv.2010.12.016
  20. Uzun H, Kim D, Karanfil T. Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Res. 2015;69:162-172. https://doi.org/10.1016/j.watres.2014.11.017
  21. Zhang B, Xian Q, Gong T, Li Y, Li A, Feng J. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases. Chem. Eng. J. 2017;307:884-890. https://doi.org/10.1016/j.cej.2016.09.018
  22. Tian F, Xu B, Lin Y, et al. Chlor(am)ination of iopamidol: Kinetics, pathways and disinfection by-products formation. Chemosphere 2017;184:489-497. https://doi.org/10.1016/j.chemosphere.2017.06.012
  23. Liu P, Farre MJ, Keller J, Gernjak W. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study. Sci. Total Environ. 2016;565:616-625. https://doi.org/10.1016/j.scitotenv.2016.05.061
  24. Meng Y, Wang M, Guo B, et al. Characterization and C-, N-disinfection byproduct formation of dissolved organic matter in MBR and anaerobic-anoxic-oxic (AAO) processes. Chem. Eng. J. 2017;315:243-250. https://doi.org/10.1016/j.cej.2017.01.009
  25. Zhou S, Zhu S, Shao Y, Gao N. Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation. Water Res. 2015;72:381-390. https://doi.org/10.1016/j.watres.2014.11.023
  26. Goslan EH, Krasner SW, Bower M, et al. A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Res. 2009;43:4698-4706. https://doi.org/10.1016/j.watres.2009.07.029
  27. Ersan MS, Ladner DA, Karanfil T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration. Water Res. 2016;105:274-281. https://doi.org/10.1016/j.watres.2016.08.065
  28. Brown JL. N-Nitrosamines. Occup. Med. 1999;14:839-848.
  29. Luo Q, Wang D, Wang Z. Occurrences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China. Sci. Total Environ. 2012;437:219-225. https://doi.org/10.1016/j.scitotenv.2012.08.023
  30. Souliotis VL, Henneman JR, Reed CD, et al. DNA adducts and liver DNA replication in rats during chronic exposure to N-nitrosodimethylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis. Mutat. Res. Fund. Mol. M. 2002;500:75-87. https://doi.org/10.1016/S0027-5107(01)00301-3
  31. Charrois JWA, Arend MW, Froese KL, Hrudey SE. Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environ. Sci. Technol. 2004;38:4835-4841. https://doi.org/10.1021/es049846j
  32. Wang W, Hu J, Yu J, Yang M. Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS. J. Environ. Sci. 2010;22:1508-1512. https://doi.org/10.1016/S1001-0742(09)60281-3
  33. Liang C, Xu B, Xian SJ, Gao NY, Li DP, Tian FX. Detection of trace NDMA in drinking water by SPE/LC/MS/MS. China Water Wastewater 2009;25:82-85.
  34. Mitch WA, Sharp JO, Trussell RR, Valentine RL, Alvarez-Cohen L, Sedlak DL. N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ. Eng. Sci. 2003;20:389-404. https://doi.org/10.1089/109287503768335896
  35. Chu WH, Gao NY, Yang D. Classification and toxicological evaluation of newfound nitrogenous disinfection byproducts (N-DBPs) in drinking water. Modern Chem. Ind. 2009; 29:86-89.
  36. Zhao YY, Boyd J, Hrudey SE, Li XF. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7636-7641. https://doi.org/10.1021/es061332s
  37. Li T, Xian Q, Sun C, Li A. The level and analysis of N-nitrosamines in waters. Environ. Chem. 2012;31:1767-1774.
  38. Planas C, Palacios O, Ventura F, Rivera J, Caixach J. Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 2008;76:906-913. https://doi.org/10.1016/j.talanta.2008.04.060
  39. Gerecke AC, Sedlak DL. Precursors of N-nitrosodimethylamine in natural waters. Environ. Sci. Technol. 2003;37:1331-1336. https://doi.org/10.1021/es026070i
  40. Chen ZL, Yin SZ, Yang L, Liu T, Xu BB. N-nitrosodimethylamine: A new disinfection by-product in water. China Water Wastewater 2007;23:6-11.
  41. He Y, Cheng H. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Res. 2016;94:305-314. https://doi.org/10.1016/j.watres.2016.02.065
  42. Zeng T, Mitch WA. Contribution of N-nitrosamines and their precursors to domestic sewage by greywaters and blackwaters. Environ. Sci. Technol. 2015;49:13158-13167. https://doi.org/10.1021/acs.est.5b04254
  43. Krauss M, Longree P, Houtte EV, Cauwenberghs J, Hollender J. Assessing the fate of nitrosamine precursors in wastewater treatment by physicochemical fractionation. Environ. Sci. Technol. 2010;44:7871-7877. https://doi.org/10.1021/es101289z
  44. Mamo J, Insa S, Monclus H, et al. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions. Water Res. 2016;102:383-393. https://doi.org/10.1016/j.watres.2016.06.057
  45. Wenhai C, Naiyun G. Formation and removal of nitrogenous disinfection by-products NDMA in drinking water. Acta Chim. Sinica 2009;72:388-393. https://doi.org/10.6023/A13080911
  46. Lu C, Liu Y, Wang Y, Zhong R. Theoretical studies on the N-nitrosodimethylamine formation from dimethylamine and nitrous acid. Acta Chim. Sinica 2007;65:1568-1572.
  47. Chen ZL, Xu BB, Qi H, et al. Determination of trace nitrosodimethylamine in water by high performance liquid chromatogram. China Water Wastewater 2007;23:84-87.
  48. Sun Z, Liu YD, Zhong RG. Theoretical investigation of N-nitrosodimethylamine formation from nitrosation of trimethylamine. J. Phys. Chem. A 2010;114:455-465. https://doi.org/10.1021/jp9056219
  49. Choi J, Valentine RL. N-nitrosodimethylamine formation by free-chlorine-enhanced nitrosation of dimethylamine. Environ. Sci. Technol. 2003;37:4871-4876. https://doi.org/10.1021/es034020n
  50. Andrzejewski P, Kasprzykhordern B, Nawrocki J. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters. Water Res. 2008;42:863-870. https://doi.org/10.1016/j.watres.2007.08.032
  51. Choi J, Valentine RL. A kinetic model of N-nitrosodimethylamine (NDMA) formation during water chlorination/chloramination. Water Sci. Technol. 2002;46:65-71. https://doi.org/10.2166/wst.2002.0056
  52. Zhang QQ, Pan SL, Zhang Y, Yang M, An W. Estimation of health risk and enaction of safety standards of N-nitrosodimethylamine (NDMA) in drinking waters in China. Environ. Sci. 2017;38:2747-2753.
  53. Haiyan W, Xiuquan S, Ming Q, et al. The exposure level of nitrosamines disinfection by-products in drinking water of China: A Meta analysis. J. Zunyi Med. Univ. 2017;40:278-284.
  54. Yang L, Chen Z, Shen J, et al. Reinvestigation of the nitrosamine-formation mechanism during ozonation. Environ. Sci. Technol. 2009;43:5481-5487. https://doi.org/10.1021/es900319f
  55. Schreiber IM, Mitch WA. Influence of the order of reagent addition on NDMA formation during chloramination. Environ. Sci. Technol. 2005;39:3811-3818. https://doi.org/10.1021/es0483286
  56. Schreiber IM, Mitch WA. Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen. Environ. Sci. Technol. 2006;40:6007-6014. https://doi.org/10.1021/es060978h
  57. Park SH, Padhye LP, Wang P, Cho M, Kim JH, Huang CH. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. J. Hazard. Mater. 2015;282:133-140. https://doi.org/10.1016/j.jhazmat.2014.07.044
  58. Roux JL, Gallard H, Croue JP. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Res. 2011;45:3164-3174. https://doi.org/10.1016/j.watres.2011.03.035
  59. Lee H, Lee E, Lee CH, Lee K. Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J. Ind. Eng. Chem. 2011;17:468-473. https://doi.org/10.1016/j.jiec.2011.05.006
  60. Gerrity D, Gamage S, Holady JC, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011;45:2155-2165. https://doi.org/10.1016/j.watres.2010.12.031
  61. Silva GHR, Daniel LA, Bruning H, Rulkens WH. Anaerobic effluent disinfection using ozone: Byproducts formation. Bioresour. Technol. 2010;101:6992-6997.
  62. Jung YJ, Oh BS, Kang JW. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Res. 2008;42:1613-1621. https://doi.org/10.1016/j.watres.2007.10.008
  63. Kitazaki S, Tanaka A, Hayashi N. Sterilization of narrow tube inner surface using discharge plasma, ozone, and UV light irradiation. Vacuum 2014;110:217-220. https://doi.org/10.1016/j.vacuum.2014.06.014
  64. Zhou XJ, Guo WQ, Yang SS, Zheng HS, Ren NQ. Ultrasonic-assisted ozone oxidation process of triphenylmethane dye degradation: Evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour. Technol. 2013;128:827-830. https://doi.org/10.1016/j.biortech.2012.10.086
  65. Cardoso JC, Bessegato GG, Zanoni MVB. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 2016;98:39-46. https://doi.org/10.1016/j.watres.2016.04.004
  66. Turhan K, Durukan I, Ozturkcan SA, Turgut Z. Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigm. 2012;92:897-901. https://doi.org/10.1016/j.dyepig.2011.07.012
  67. Ham JE, Wells JR. Surface chemistry of a pine-oil cleaner and other terpene mixtures with ozone on vinyl flooring tiles. Chemosphere 2011;83:327-333. https://doi.org/10.1016/j.chemosphere.2010.12.036
  68. Oya M, Kosaka K, Asami M, Kunikane S. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds. Chemosphere 2008;73:1724-1730. https://doi.org/10.1016/j.chemosphere.2008.09.026
  69. Duffy EF, Touati FA, Kehoe SC, et al. A novel $TiO_2$-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energ. 2004;77:649-655. https://doi.org/10.1016/j.solener.2004.05.006
  70. Zhao YY, Boyd JM, Woodbeck M, et al. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters. Environ. Sci. Technol. 2008;42:4857-4862. https://doi.org/10.1021/es7031423
  71. Zhang A, Li Y, Song Y, Lv J, Yang J. Characterization of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors during disinfection processes using free chlorine and chlorine dioxide. J. Hazard. Mater. 2014;276:499-509. https://doi.org/10.1016/j.jhazmat.2014.05.069
  72. Mitch WA, Gerecke AC, Sedlak DL. A N-nitrosodimethylamine (NDMA) precursor analysis for chlorination of water and wastewater. Water Res. 2003;37:3733-3741. https://doi.org/10.1016/S0043-1354(03)00289-6
  73. Chen WH, Young TM. NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environ. Sci. Technol. 2008;42:1072-1077. https://doi.org/10.1021/es072044e
  74. Charrois JW, Hrudey SE. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007;41:674-682. https://doi.org/10.1016/j.watres.2006.07.031
  75. Farre MJ, Doderer K, Hearn L, Poussade Y, Keller J, Gernjak W. Understanding the operational parameters affecting NDMA formation at advanced water treatment plants. J. Hazard. Mater. 2011;185:1575-1581. https://doi.org/10.1016/j.jhazmat.2010.10.090
  76. Changha L, Carsten S, Jeyong Y. Oxidation of N-nitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and effect on NDMA formation potential. Environ. Sci. Technol. 2007;41:2056-2063. https://doi.org/10.1021/es062484q
  77. Seid MG, Cho K, Lee C, Park HM, Hong SW. Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine. Sci. Total Environ. 2018;633:352-359. https://doi.org/10.1016/j.scitotenv.2018.03.181
  78. Selbes M, Kim D, Karanfil T. The effect of pre-oxidation on NDMA formation and the influence of pH. Water Res. 2014;66:169-179. https://doi.org/10.1016/j.watres.2014.08.015
  79. Shen R, Andrews SA. Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Res. 2013;47:802-810. https://doi.org/10.1016/j.watres.2012.11.004
  80. Hatt JW, Lamy C, Germain E, Tupper M, Judd SJ. NDMA formation in secondary wastewater effluent. Chemosphere 2013;91:83-87. https://doi.org/10.1016/j.chemosphere.2012.11.003
  81. Andrzejewski P, Nawrocki J. N-nitrosodimethylamine formation during treatment with strong oxidants of dimethylamine containing water. Water Sci. Technol. 2007;56:125-131. https://doi.org/10.2166/wst.2007.802
  82. Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination 2005;176:37-45. https://doi.org/10.1016/j.desal.2004.11.009
  83. Chen Z, Valentine RL. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine. Environ. Sci. Technol. 2006;40:7290-7297. https://doi.org/10.1021/es0605319
  84. Lv J, Wang L, Song Y, Li Y. N-nitrosodimethylamine formation from ozonation of chlorpheniramine: Influencing factors and transformation mechanism. J. Hazard. Mater. 2015;299:584-594. https://doi.org/10.1016/j.jhazmat.2015.07.062
  85. Marti EJ, Pisarenko AN, Peller JR, Dickenson ER. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds. Water Res. 2015;72:262-270. https://doi.org/10.1016/j.watres.2014.08.047
  86. Sgroi M, Roccaro P, Oelker GL, Snyder SA. N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility. Water Res. 2015;70:174-183. https://doi.org/10.1016/j.watres.2014.11.051
  87. Sgroi M, Roccaro P, Oelker G, Snyder SA. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers. Chemosphere 2016;144:1618-1623. https://doi.org/10.1016/j.chemosphere.2015.10.023
  88. Lim S, Lee W, Na S, Shin J, Lee Y. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control. Water Res. 2016;105:119-128. https://doi.org/10.1016/j.watres.2016.08.054
  89. Hu H, Jiang C, Ma H, et al. Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM. Water Res. 2017;109:114-121. https://doi.org/10.1016/j.watres.2016.10.010
  90. Boyd JM, Hrudey SE, Li XF, Richardson SD. Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. TrAC Trend. Anal. Chem. 2011;30:1410-1421. https://doi.org/10.1016/j.trac.2011.06.009
  91. Kemper JM, Walse SS, Mitch WA. Quaternary amines as nitrosamine precursors: A role for consumer products? Environ. Sci. Technol. 2010;44:1224-1231. https://doi.org/10.1021/es902840h
  92. Liu C, Olivares CI, Pinto AJ, et al. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017;124:630-653. https://doi.org/10.1016/j.watres.2017.07.080
  93. Song Y, Breider F, Ma J, von Gunten U. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential. Water Res. 2017;122:246-257. https://doi.org/10.1016/j.watres.2017.05.074
  94. Mitch WA, Sedlak DL. Factors controlling nitrosamine formation during wastewater chlorination. Water Sci. Technol. Water Supply 2002;2:191-198. https://doi.org/10.2166/ws.2002.0102
  95. Wilczak A, Assadi-Rad A, Lai HH, et al. Formation of NDMA in chloraminated water coagulated with DADMAC cationic polymer. J. Am. Water Works Assoc. 2003;95:94-106. https://doi.org/10.1002/j.1551-8833.2003.tb10411.x
  96. Shen R, Andrews SA. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 2011;45:944-952. https://doi.org/10.1016/j.watres.2010.09.036
  97. Mitch WA, Sedlak DL. Characterization and fate of N-nitrosodimethylamine precursors in municipal wastewater treatment plants. Environ. Sci. Technol. 2004;38:1445-1454. https://doi.org/10.1021/es035025n
  98. Chen Z, Valentine RL. Formation of N-nitrosodimethylamine (NDMA) from humic substances in natural water. Environ. Sci. Technol. 2007;41:6059-6065. https://doi.org/10.1021/es0705386
  99. Li L, Gao N, Deng Y, Yao J, Zhang K. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystis aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Res. 2012;46:1233-1240. https://doi.org/10.1016/j.watres.2011.12.026
  100. Ma C, Pei H, Hu W, Wang Y, Xu H, Jin Y. The enhanced reduction of C- and N-DBP formation in treatment of source water containing Microcystis aeruginosa using a novel CTSAC composite coagulant. Sci. Total Environ. 2017;579:1170-1178. https://doi.org/10.1016/j.scitotenv.2016.11.099
  101. Zhang H, Andrews SA. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing. Chemosphere 2013;93:2683-2689. https://doi.org/10.1016/j.chemosphere.2013.08.067
  102. Gan X, Karanfil T, Kaplan Bekaroglu SS, Shan J. The control of N-DBP and C-DBP precursors with $MIEX^{(R)}$. Water Res. 2013;47:1344-1352. https://doi.org/10.1016/j.watres.2012.11.049
  103. Luo XH, Clevenger TE, Deng BL. Role of NOM in the formation of N-nitrosodimethylamine (NDMA) in surface waters. In: Abstracts of papers of the American chemical society. 1155 16th st, NW, Washington D.C. 20036 USA: Amer Chemical Soc; 2005. p. U848-U848.
  104. Pehlivanoglu-Mantas E, Sedlak DL. Measurement of dissolved organic nitrogen forms in wastewater effluents: Concentrations, size distribution and NDMA formation potential. Water Res. 2008;42:3890-3898. https://doi.org/10.1016/j.watres.2008.05.017
  105. Lee W, Westerhoff P, Croue JP. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloronitromethane. Environ. Sci. Technol. 2007;41:5485-5490. https://doi.org/10.1021/es070411g
  106. Pehlivanoglu-Mantas E, Hawley EL, Deeb RA, Sedlack DL. Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems. Water Res. 2006;40:341-347. https://doi.org/10.1016/j.watres.2005.11.012
  107. Hu H, Ma H, Ding L, et al. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study. Sci. Total Environ. 2016;569-570:1359-1368. https://doi.org/10.1016/j.scitotenv.2016.06.218
  108. Bazri MM, Martijn B, Kroesbergen J, Mohseni M. Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. Chemosphere 2016;144:1988-1995. https://doi.org/10.1016/j.chemosphere.2015.10.086
  109. Zhang H, Zhang K, Jin H, Gu L, Yu X. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment. Chemosphere 2015;139:652-658. https://doi.org/10.1016/j.chemosphere.2014.10.092
  110. Michael-Kordatou I, Michael C, Duan X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. Water Res. 2015;77:213-248. https://doi.org/10.1016/j.watres.2015.03.011
  111. Lee W, Westerhoff P, Esparza-Soto M. Occurrence and removal of dissolved organic nitrogen in US water treatment plants. J. Am. Water Works Assoc. 2006;98:102-110. https://doi.org/10.1002/j.1551-8833.2006.tb07592.x
  112. Qiao CG, Wei QS, Wang D, Yang M, Wei Q, Li MJ. Molecular weight distribution and removal characters of DOM in the typical source water in south of China. Acta Sci. Circum. 2007;27:195-200. https://doi.org/10.3321/j.issn:0253-2468.2007.02.004
  113. Acero JL, Real FJ, Benitez FJ, Gonzalez M. Kinetics of reactions between chlorine or bromine and the herbicides diuron and isoproturon. J. Chem. Technol. Biotechnol. 2007;82:214-222. https://doi.org/10.1002/jctb.1660
  114. Mascolo G, Lopez A, James H, Fielding M. By-products formation during degradation of isoproturon in aqueous solution. II: Chlorination. Water Res. 2001;35:1705-1713. https://doi.org/10.1016/S0043-1354(00)00428-0
  115. Fuxiang T, Bin X, Lang Q, et al. Influence of bromide ions upon chlorination characteristics of chlortoluron as precursor of NDMA. J. Tongji Univ. 2014;42:272-277. https://doi.org/10.3969/j.issn.0253-374x.2014.02.016
  116. von Gunten U, Salhi E, Schmidt CK, Arnold WA. Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: Bromide catalysis. Environ. Sci. Technol. 2010;44:5762-5768. https://doi.org/10.1021/es1011862
  117. Padhye L, Wang P, Karanfil T, Huang CH. Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines. Environ. Sci. Technol. 2010;44:4161-4168. https://doi.org/10.1021/es903916t
  118. Kodamatani H, Lwaya Y, Saga M, et al. Ultra-sensitive HPLC-photochemical reaction-luminol chemiluminescence method for the measurement of secondary amines after nitrosation. Anal. Chim. Acta 2017;952:50-58. https://doi.org/10.1016/j.aca.2016.11.045
  119. Farre MJ, Insa S, Mamo J, Barcelo D. Determination of 15 N-nitrosodimethylamine precursors in different water matrices by automated on-line solid-phase extraction ultra-high-performance-liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016;1458:99-111. https://doi.org/10.1016/j.chroma.2016.06.064
  120. Herrmann SS, Granby K, Duedahl-Olesen L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015;174:516-526. https://doi.org/10.1016/j.foodchem.2014.11.101
  121. Farajzadeh MA, Abbaspour M. Development of a new sample preparation method based on liquid-liquid-liquid extraction combined with dispersive liquid-liquid microextraction and its application on unfiltered samples containing high content of solids. Talanta 2017;174:111-121. https://doi.org/10.1016/j.talanta.2017.05.084
  122. Farajzadeh MA, Yadeghari A, Khoshmaram L. Combination of dispersive solid phase extraction and dispersive liquid- liquid microextraction for extraction of some aryloxy pesticides prior to their determination by gas chromatography. Microchem. J. 2017;131:182-191. https://doi.org/10.1016/j.microc.2016.12.013
  123. Wen Hai C, Nai Yun G, Shigu Z. Advance in analytical techniques of disinfection by-products NDMA in drinking water. Chem. Ind. Eng. Prog. 2008;27:1512-1515. https://doi.org/10.3321/j.issn:1000-6613.2008.10.005
  124. Kosaka K, Asami M, Konno Y, Oya M, Kunikane S. Identification of antiyellowing agents as precursors of N-nitrosodimethylamine production on ozonation from sewage treatment plant influent. Environ. Sci. Technol. 2009;43:5236-5241. https://doi.org/10.1021/es900227g
  125. Grebel JE, Young CC, Suffet IH. Solid-phase microextraction of N-nitrosamines. J. Chromatogr. A 2006;1117:11-18. https://doi.org/10.1016/j.chroma.2006.03.044
  126. Zhao YY, Boyd J, Hrudey SE, Li XF. Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 2006;40:7636-7641. https://doi.org/10.1021/es061332s
  127. Krauss M, Hollender J. Analysis of nitrosamines in wastewater: Exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 2008;80:834-842. https://doi.org/10.1021/ac701804y
  128. Qiu Ju Z, Zu Peng G, Ming Zu L. Determination of seven N-nitrosamine compounds by HS-SPME-GC-MS. Chinese J. Health Lab. Technol. 2009;19:1234-1236.
  129. Fine DH, Rounbehler DP, Rounbehler A, et al. Determination of dimethylnitrosamine in air, water, and soil by thermal energy analysis: Measurements in Baltimore, Md. Environ. Sci. Technol. 1977;11:581-584. https://doi.org/10.1021/es60129a003
  130. Lee C, Lee Y, Schmidt C, Yoon J, Von Gunten U. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters. Water Res. 2008;42:433-441. https://doi.org/10.1016/j.watres.2007.07.035
  131. Chung J, Ahn CH, Chen Z, Rittmann BE. Bio-reduction of N-nitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor. Chemosphere 2008;70:516-520. https://doi.org/10.1016/j.chemosphere.2007.07.016
  132. Plumlee MH, Reinhard M. Photochemical attenuation of N-nitrosodimethylamine (NDMA) and other nitrosamines in surface water. Environ. Sci. Technol. 2007;41:6170-6176. https://doi.org/10.1021/es070818l
  133. Hanigan D, Ferrer I, Thurman EM, Herckes P, Westerhoff P. LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification. J. Hazard. Mater. 2017;323:18-25. https://doi.org/10.1016/j.jhazmat.2016.04.023
  134. Hong Y, Kim KH, Sang BI, Kim H. Simple quantification method for N-nitrosamines in atmospheric particulates based on facile pretreatment and GC-MS/MS. Environ. Pollut. 2017;226:324-334. https://doi.org/10.1016/j.envpol.2017.04.017
  135. Fujioka T, Takeuchi H, Tanaka H, Nghiem LD, Ishida KP, Kodamatani H. A rapid and reliable technique for N-nitrosodimethylamine analysis in reclaimed water by HPLC-photochemical reaction-chemiluminescence. Chemosphere 2016;161:104-111. https://doi.org/10.1016/j.chemosphere.2016.06.094
  136. Hu CW, Shih YM, Liu HH, Chiang YC, Chen CM, Chao MR. Elevated urinary levels of carcinogenic N-nitrosamines in patients with urinary tract infections measured by isotope dilution online SPE LC-MS/MS. J. Hazard. Mater. 2016;310:207-216. https://doi.org/10.1016/j.jhazmat.2016.02.048
  137. Kodamatani H, Yamasaki H, Sakaguchi T, et al. Rapid method for monitoring N-nitrosodimethylamine in drinking water at the ng/L level without pre-concentration using high-performance liquid chromatography-chemiluminescence detection. J. Chromatogr. A 2016;1460:202-206. https://doi.org/10.1016/j.chroma.2016.07.014
  138. Wang C, Zhang X, Wang J, Chen C. Characterization of dissolved organic matter as N-nitrosamine precursors based on hydrophobicity, molecular weight and fluorescence. J. Environ. Sci. 2013;25:85-95. https://doi.org/10.1016/S1001-0742(12)60029-1
  139. Lu C, Li S, Gong S, Yuan S, Yu X. Mixing regime as a key factor to determine DON formation in drinking water biological treatment. Chemosphere 2015;139:638-643. https://doi.org/10.1016/j.chemosphere.2014.12.059
  140. Liu B, Gu L, Yu X, Yu G, Zhang H, Xu J. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration. Sci. Total Environ. 2012;414:508-514. https://doi.org/10.1016/j.scitotenv.2011.10.049
  141. Xu B, Li DP, Li W, et al. Measurements of dissolved organic nitrogen (DON) in water samples with nanofiltration pretreatment. Water Res. 2010;44:5376-5384. https://doi.org/10.1016/j.watres.2010.06.034
  142. Lee S, Lueptow RM. Toward a reverse osmosis membrane system for recycling space mission wastewater. Life Support Biosph. Sci. 2000;7:251-261.
  143. Hu H, Ding L, Geng J, Huang H, Xu K, Ren H. Effect of coagulation on dissolved organic nitrogen (DON) bioavailability in municipal wastewater effluents. J. Environ. Chem. Eng. 2016;4:2536-2544. https://doi.org/10.1016/j.jece.2016.04.036
  144. Zhu G, Wang Q, Yin J, et al. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant. Water Res. 2016;100:201-210. https://doi.org/10.1016/j.watres.2016.05.035
  145. Arnaldos M, Pagilla K. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration. Water Res. 2010;44:5306-5315. https://doi.org/10.1016/j.watres.2010.06.066
  146. Lee W, Westerhoff P. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation. Water Res. 2006;40:3767-3774. https://doi.org/10.1016/j.watres.2006.08.008
  147. Wei LI, Bin XU, Xia SJ, et al. Characteristics of DON and NDMA formation potential in water treatment. China Water Wastewater 2009;25:35-38.
  148. Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system. Water Res. 2002;36:4137-4143. https://doi.org/10.1016/S0043-1354(02)00122-7
  149. Yoon Y, Lueptow RM. Removal of organic contaminants by RO and NF membranes. J. Membrane Sci. 2005;261:76-86. https://doi.org/10.1016/j.memsci.2005.03.038
  150. Lee S, Lueptow RM. Reverse osmosis filtration for space mission wastewater: Membrane properties and operating conditions. J. Membrane Sci. 2001;182:77-90. https://doi.org/10.1016/S0376-7388(00)00553-6
  151. Charrois JWA, Hrudey SE. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Res. 2007;41:674-682. https://doi.org/10.1016/j.watres.2006.07.031
  152. Ventanas S, Ruiz J. On-site analysis of volatile nitrosamines in food model systems by solid-phase microextraction coupled to a direct extraction device. Talanta 2006;70:1017-1023. https://doi.org/10.1016/j.talanta.2006.02.031
  153. Yoon S, Nakada N, Tanaka H. Occurrence and removal of NDMA and NDMA formation potential in wastewater treatment plants. J. Hazard. Mater. 2011;190:897-902. https://doi.org/10.1016/j.jhazmat.2011.04.010
  154. Chen HW, Chen CY, Wang GS. Performance evaluation of the UV/$H_2O_2$ process on selected nitrogenous organic compounds: Reductions of organic contents vs. corresponding C-, N-DBPs formations. Chemosphere 2011;85:591-597. https://doi.org/10.1016/j.chemosphere.2011.06.090
  155. Kommineni S, Ela WP, Arnold RG, Huling SG, Hester BJ, Betterton EA. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environ. Eng. Sci. 2003;20:361-373. https://doi.org/10.1089/109287503322148636
  156. Dai XD, Bao XC, Zhu YJ, et al. Removal of N-nitrosodimethylamine from water by modified activated carbons. Carbon Tech. 2010;29:11-15.
  157. Plumlee MH, Lopez-Mesas M, Heidlberger A, Ishida KP, Reinhard M. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS. Water Res. 2007;42:347-355. https://doi.org/10.1016/j.watres.2007.07.022
  158. Steinle-Darling E, Zedda M, Plumlee MH, Ridgway HF, Reinhard M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Res. 2007;41:3959-3967. https://doi.org/10.1016/j.watres.2007.05.034
  159. Stefan MI, Bolton JR. UV direct photolysis of N-nitrosodimethylamine (NDMA): Kinetic and product study. Helv. Chim. Acta 2015;85:1416-1426. https://doi.org/10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I
  160. Swaim P, Royce A, Smith T, Maloney T, Ehlen D, Carter B. Effectiveness of UV advanced oxidation for destruction of micro-pollutants. Ozone Sci. Eng. 2008;30:34-42. https://doi.org/10.1080/01919510701753390
  161. Kwon BG, Kim JO, Namkung KC. The formation of reactive species having hydroxyl radical-like reactivity from UV photolysis of N-nitrosodimethylamine (NDMA): Kinetics and mechanism. Sci. Total Environ. 2012;437:237-244. https://doi.org/10.1016/j.scitotenv.2012.08.016
  162. Lee M, Lee Y, Soltermann F, von Gunten U. Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. Water Res. 2013;47:4893-4903. https://doi.org/10.1016/j.watres.2013.05.031
  163. Sun Z, Zhang C, Zhao X, Chen J, Zhou Q. Efficient photo-reductive decomposition of N-nitrosodimethylamine by UV/iodide process. J. Hazard. Mater. 2016;329:185-192. https://doi.org/10.1016/j.jhazmat.2016.12.046
  164. Lee C, Choi W, Kim YG, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environ. Sci. Technol. 2005;39:2101-2106. https://doi.org/10.1021/es0488941
  165. Lee C, Choi W, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Roles of dissolved oxygen and solution pH. Environ. Sci. Technol. 2005;39:9702-9709. https://doi.org/10.1021/es051235j
  166. Sharpless CM, Linden KG. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and $H_2O_2$ assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environ. Sci. Technol. 2003;37:1933-1940. https://doi.org/10.1021/es025814p
  167. Xu BB, Chen ZL, Qi F, Ma J. Efficiency of photodecomposition of trace NDMA in water by UV irradiation. Environ. Sci. 2008;29:1908-1913. https://doi.org/10.3321/j.issn:0250-3301.2008.07.025
  168. Fan L, Yang X, Chen S, et al. Influence of light and temperature on degradation of N-nitrosodimethylamine and N-nitrosodiethylamine. South China Fish. Sci. 2009;5:53-58. https://doi.org/10.3969/j.issn.1673-2227.2009.03.009
  169. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem. Rev. 1993;93:671-698. https://doi.org/10.1021/cr00018a003
  170. Hiramoto K, Ryuno Y, Kikugawa K. Decomposition of N-nitrosamines, and concomitant release of nitric oxide by Fenton reagent under physiological conditions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002;520:103-111. https://doi.org/10.1016/S1383-5718(02)00168-7
  171. Lee C, Yoon J, Von Gunten U. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res. 2006;41:581-590. https://doi.org/10.1016/j.watres.2006.10.033
  172. Huang LX, Shen JM, Xu BB, Chen ZL. Study on photodegradation of NDMA using UV/$H_2O_2$ process. China Water Wastewater 2010;26:104-108.
  173. Xu BB, Chen ZL, Qi F, Yang L, Huang LX. Control on products of NDMA degradation by UV/$O_3$. Huanjing Kexue 2008;29:3421-3427.
  174. Liang S, Min JH, Davis MK, Greenn JF, Remer DS. Use of pulsed-UV processes to destroy NDMA. J. Am. Water Works Assoc. 2003;95:121-131. https://doi.org/10.1002/j.1551-8833.2003.tb10459.x
  175. Frierdich AJ, Shapley JR, Strathmann TJ. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts. Environ. Sci. Technol. 2008;42:262-269. https://doi.org/10.1021/es0712928
  176. Gui L, Gillham RW, Odziemkowski MS. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics. Environ. Sci. Technol. 2000;34:3489-3494. https://doi.org/10.1021/es9909778
  177. Odziemkowski MS, Gui L, Gillham RW. Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 2. Mechanistic studies. Environ. Sci. Technol. 2000;34:3495-3500. https://doi.org/10.1021/es9909780
  178. Davie MG, Reinhard M, Shapley JR. Metal-catalyzed reduction of N-nitrosodimethylamine with hydrogen in water. Environ. Sci. Technol. 2006;40:7329-7335. https://doi.org/10.1021/es061097d
  179. Davie MG, Shih K, Pacheco FA, Leckie JO, Reinhard M. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: Indium as a promoter metal. Environ. Sci. Technol. 2008;42:3040-3046. https://doi.org/10.1021/es7023115
  180. Yang WC, Gan J, Liu WP, Green R. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils. J. Environ. Qual. 2005;34:336-341. https://doi.org/10.2134/jeq2005.0336
  181. Mallik MA, Tesfai K. Transformation of nitrosamines in soil and in vitro by soil microorganisms. Bull. Environ. Contam. Toxicol. 1981;27:115-121. https://doi.org/10.1007/BF01610996
  182. Zhou Q, Mccraven S, Garcia J, Gasca M, Johnson TA, Motzer WE. Field evidence of biodegradation of N-nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Res. 2009;43:793-805. https://doi.org/10.1016/j.watres.2008.11.011
  183. Sharp JO, Wood TK, Alvarezcohen L. Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol. Bioeng. 2005;89:608-618. https://doi.org/10.1002/bit.20405
  184. Yifru DD, Nzengung VA. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant. Environ. Sci. Technol. 2006;40:7374-7380. https://doi.org/10.1021/es060449d

Cited by

  1. Correlation Characteristics of Electrical Conductivity of Surface Waters with the Fluorescence Excitation-Emission Matrix Spectroscopy-Parallel Factor Components of Dissolved Organic Matter vol.30, pp.6, 2019, https://doi.org/10.1007/s10895-020-02628-6
  2. Detection of N-nitrosodimethylamine (NDMA) and its formation potential in hospital wastewater vol.28, pp.11, 2019, https://doi.org/10.1007/s11356-021-12785-1
  3. Multi-linear regression model for chlorine consumption by waters vol.26, pp.4, 2019, https://doi.org/10.4491/eer.2020.402