DOI QR코드

DOI QR Code

Effects of organic carbon and UV wavelength on the formation of dissolved gaseous mercury in water under a controlled environment

  • Lee, Jae-In (Department of Environmental Science, Kangwon National University) ;
  • Yang, Ji-Hye (Policy Planning Team, AKA Inc.) ;
  • Kim, Pyung-Rae (Department of Environmental Science, Kangwon National University) ;
  • Han, Young-Ji (Department of Environmental Science, Kangwon National University)
  • Received : 2018.01.23
  • Accepted : 2018.05.22
  • Published : 2019.03.31

Abstract

The effects of UV wavelength and dissolved organic carbon (DOC) on the formation of dissolved gaseous mercury (DGM) were investigated in a controlled environment. To remove any other influences than UV wavelength and DOC, purified water was used as the working solution. DGM was instantly produced with irradiation of all UV lights even without DOC; whereas, there was no noticeable increase of DGM during irradiation of visible light. The amount of formed DGM increased as the DOC concentration increased even in dark conditions; however, UV-B irradiation significantly promoted DGM production with DOC present. The rate constants of reduction ranged from $1.4{\times}10^{-6}s^{-1}$ to $3.5{\times}10^{-5}s^{-1}$, with the lower values occurring under the dark condition without DOC and the higher values resulting under UV-B irradiation and high DOC concentration. However, DGM production was not linearly correlated with the DOC concentration at higher range of DOC in this study. Future studies should investigate the effects of DOC concentration on mercury (Hg) reduction over the broad range of DOC concentrations with different DOC structures and with other influencing parameters.

Keywords

References

  1. Nriagu JO. Biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press; 1979.
  2. Schroeder WH, Munthe J. Atmospheric mercury - An overview. Atmos. Environ. 1998;32:809-822. https://doi.org/10.1016/S1352-2310(97)00293-8
  3. O'Driscoll N, Poissant L, Canario J, Ridal J, Lean D. Continuous analysis of dissolved gaseous mercury and mercury volatilization in the upper St. Lawrence River: Exploring temporal relationships and UV attenuation. Environ. Sci. Technol. 2007;41:5342-5348. https://doi.org/10.1021/es070147r
  4. Hu H, Lin H, Zheng W, et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geosci. 2013;6:751-754. https://doi.org/10.1038/ngeo1894
  5. UNEP: The global atmospheric mercury assessment. UNEP Chemical Branch, Geneva, Switzerland; 2013.
  6. Stein ED, Cohen Y, Winer AM. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996;26:1-43. https://doi.org/10.1080/10643389609388485
  7. Ullrich SM, Tanton TW, Abdrashitova SA. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001;31:241-293. https://doi.org/10.1080/20016491089226
  8. Fitzgerald WF, Lamborg CH, Hammerschmidt CR. Marine biogeochemical cycling of mercury. Chem. Rev. 2007;107:641-662. https://doi.org/10.1021/cr050353m
  9. Liu G, Cai Y, O'Driscoll N. Environmental chemistry and toxicology of mercury. John Wiley & Sons; 2011.
  10. Siciliano SD, O'Driscoll NJ, Lean D. Microbial reduction and oxidation of mercury in freshwater lakes. Environ. Sci. Technol. 2002;36:3064-3068. https://doi.org/10.1021/es010774v
  11. Schaefer JK, Letowski J, Barkay T. mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions. Geomicrobiol. J. 2002;19:87-102. https://doi.org/10.1080/014904502317246192
  12. Kelly C, Rudd JW, Holoka M. Effect of pH on mercury uptake by an aquatic bacterium: Implications for Hg cycling. Environ. Sci. Technol. 2003;37:2941-2946. https://doi.org/10.1021/es026366o
  13. Amyot M, Southworth G, Lindberg S, et al. Formation and evasion of dissolved gaseous mercury in large enclosures amended with $^{200}HgCl_2$. Atmos. Environ. 2004;38:4279-4289. https://doi.org/10.1016/j.atmosenv.2004.05.002
  14. O'Driscoll N, Lean D, Loseto L, Carignan R, Siciliano S. Effect of dissolved organic carbon on the photoproduction of dissolved gaseous mercury in lakes: Potential impacts of forestry. Environ. Sci. Technol. 2004;38:2664-2672. https://doi.org/10.1021/es034702a
  15. Tseng C, Lamborg C, Fitzgerald W, Engstrom D. Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochim. Cosmochim. Acta 2004;68:1173-1184. https://doi.org/10.1016/j.gca.2003.07.023
  16. Barkay T, Wagner-Dobler I. Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 2005;57:1-52. https://doi.org/10.1016/S0065-2164(05)57001-1
  17. Wiatrowski HA, Ward PM, Barkay T. Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ. Sci. Technol. 2006;40:6690-6696. https://doi.org/10.1021/es061046g
  18. Amyot M, Auclair J, Poissant L. In situ high temporal resolution analysis of elemental mercury in natural waters. Anal. Chim. Acta 2001;447:153-159. https://doi.org/10.1016/S0003-2670(01)01287-9
  19. Zhang H, Lindberg SE. Trends in dissolved gaseous mercury in the Tahquamenon River watershed and nearshore waters of Whitefish Bay in the Michigan Upper Peninsula. Water Air Soil Pollut. 2002;133:381-391. https://doi.org/10.1023/A:1012919030291
  20. O'Driscoll NJ, Beauchamp S, Siciliano SD, Rencz AN, Lean DR. Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: Evaluating mercury flux models with quantitative data. Environ. Sci. Technol. 2003;37:2226-2235. https://doi.org/10.1021/es025944y
  21. Dill C, Kuiken T, Zhang H, Ensor M. Diurnal variation of dissolved gaseous mercury (DGM) levels in a southern reservoir lake (Tennessee, USA) in relation to solar radiation. Sci. Total Environ. 2006;357:176-193. https://doi.org/10.1016/j.scitotenv.2005.04.011
  22. Garcia E, Amyot M, Ariya PA. Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochim. Cosmochim. Acta 2005;69:1917-1924. https://doi.org/10.1016/j.gca.2004.10.026
  23. Ahn M, Kim B, Holsen TM, Yi S, Han Y. Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir. Environ. Pollut. 2010;158:347-355. https://doi.org/10.1016/j.envpol.2009.08.036
  24. Xiao Z, Stromberg D, Lindqvist O. Influence of humic substances on photolysis of divalent mercury in aqueous solution. Water Air Soil Pollut. 1995;80:789-798. https://doi.org/10.1007/BF01189730
  25. O'Driscoll N, Siciliano S, Peak D, Carignan R, Lean D. The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions. Sci. Total Environ. 2006;366:880-893. https://doi.org/10.1016/j.scitotenv.2005.09.067
  26. Watras CJ, Morrison KA, Host JS, Bloom NS. Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes. Limnol. Oceanogr. 1995;40:556-565. https://doi.org/10.4319/lo.1995.40.3.0556
  27. Soerensen AL, Mason RP, Balcom PH, Sunderland EM. Drivers of surface ocean mercury concentrations and air-sea exchange in the West Atlantic Ocean. Environ. Sci. Technol. 2013;47:7757-7765. https://doi.org/10.1021/es401354q
  28. Larson RA, Marley KA. Oxidative mechanisms of phototoxicity. In: Nriagu JO, Simmons MS, eds. Oxidants in the environment. Advances in environmental science and technology. New York: J. Wiley and Sons; 1994. p. 269-317.
  29. Amyot M, Mierle G, Lean D, Mc Queen DJ. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochim. Cosmochim. Acta 1997;61:975-987. https://doi.org/10.1016/S0016-7037(96)00390-0
  30. Maloney KO, Morris DP, Moses CO, Osburn CL. The role of iron and dissolved organic carbon in the absorption of ultraviolet radiation in humic lake water. Biogeochemistry 2005;75:393-407. https://doi.org/10.1007/s10533-005-1675-3
  31. Allard B, Arsenie I. Abiotic reduction of mercury by humic substances in aquatic system - An important process for the mercury cycle. Water Air Soil Pollut. 1991;56:457-464. https://doi.org/10.1007/BF00342291
  32. Park J, Oh S, Shin M, Kim M, Yi S, Zoh K. Seasonal variation in dissolved gaseous mercury and total mercury concentrations in Juam Reservoir, Korea. Environ. Pollut. 2008;154:12-20. https://doi.org/10.1016/j.envpol.2007.12.002
  33. EPA U. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. US Environmental Protection Agency Washington, DC; 2002.
  34. Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. USA 2011;108:1479-1483. https://doi.org/10.1073/pnas.1008747108
  35. Park SY, Holsen TM, Kim PR, Han YJ. Laboratory investigation of factors affecting mercury emissions from soils. Environ. Earth Sci. 2014;72:2711-2721. https://doi.org/10.1007/s12665-014-3177-x
  36. Choi HD, Holsen TM. Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation. Environ. Pollut. 2009;157:1673-1678. https://doi.org/10.1016/j.envpol.2008.12.014
  37. Nriagu JO. Mechanistic steps in the photoreduction of mercury in natural waters. Sci. Total Environ. 1994;154:1-8. https://doi.org/10.1016/0048-9697(94)90608-4
  38. Oh S, Kim M, Lee Y, Zoh K. Effect of Abiotic and biotic factors on the photo-induced production of dissolved gaseous mercury. Water Air Soil Pollut. 2011;220:353-363. https://doi.org/10.1007/s11270-011-0759-z
  39. O'driscoll N, Siciliano S, Lean D, Amyot M. Gross photoreduction kinetics of mercury in temperate freshwater lakes and rivers: Application to a general model of DGM dynamics. Environ. Sci. Technol. 2006;40:837-843. https://doi.org/10.1021/es051062y
  40. Amyot M, Lean DR, Poissant L, Doyon M. Distribution and transformation of elemental mercury in the St. Lawrence River and Lake Ontario. Can. J. Fish. Aquat. Sci. 2000;57:155-163.
  41. Spokes LJ, Liss PS. Photochemically induced redox reactions in seawater, I. Cations. Mar. Chem. 1995;49:201-213. https://doi.org/10.1016/0304-4203(95)00006-D
  42. Alberts JJ, Schindler JE, Miller RW, Nutter DE Jr. Elemental mercury evolution mediated by humic Acid. Science 1974;184:895-897. https://doi.org/10.1126/science.184.4139.895
  43. Matthiessen A. Kinetic aspects of the reduction of mercury ions by humic substances. Fresenius J. Anal. Chem. 1996;354:747-749. https://doi.org/10.1007/s0021663540747
  44. Matthiessen A. Reduction of divalent mercury by humic substances - Kinetic and quantitative aspects. Sci. Total Environ. 1998;213:177-183. https://doi.org/10.1016/S0048-9697(98)00090-4
  45. Cooper WJ, Zika RG, Petasne RG, Fischer AM. Sunlight-induced photochemistry of humic substances in natural waters: Major reactive species. In: Anonymous: ACS Publications;1989.
  46. Zepp RG, Braun AM, Hoigne J, Leenheer JA. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environ. Sci. Technol. 1987;21:485-490. https://doi.org/10.1021/es00159a010
  47. Voelker BM, Morel FM, Sulzberger B. Iron redox cycling in surface waters: Effects of humic substances and light. Environ. Sci. Technol. 1997;31:1004-1011. https://doi.org/10.1021/es9604018
  48. Zhang H, Lindberg SE. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater. Environ. Sci. Technol. 2001;35:928-935. https://doi.org/10.1021/es001521p
  49. Costa M, Liss P. Photoreduction of mercury in sea water and its possible implications for $Hg^0$ air-sea fluxes. Mar. Chem. 1999;68:87-95. https://doi.org/10.1016/S0304-4203(99)00067-5
  50. Ravichandran M, Araujo R, Zepp R. Role of humic substances on the photochemical reduction of mercury. Am. Chem. Soc. 2000;220:U362-U362.
  51. Kim B, Choi K, Kim C, Lee U, Kim Y. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res. 2000;34:3495-3504. https://doi.org/10.1016/S0043-1354(00)00104-4
  52. Choi K, Kim B, Lee U. Characteristics of dissolved organic carbon in three layers of a deep reservoir, Lake Soyang, Korea. Int. Rev. Hydrobiol. 2001;86:63-76. https://doi.org/10.1002/1522-2632(200101)86:1<63::AID-IROH63>3.0.CO;2-X
  53. Park H, Byeon M, Shin Y, Jung D. Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics. Water Resour. Res. 2009;45.
  54. Lee Y, Hur J, Shin K. Characterization and source identification of organic matter in view of land uses and heavy rainfall in the Lake Shihwa, Korea. Mar. Pollut. Bull. 2014;84:322-329. https://doi.org/10.1016/j.marpolbul.2014.04.033
  55. Whalin L, Kim E, Mason R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 2007;107:278-294. https://doi.org/10.1016/j.marchem.2007.04.002
  56. Whalin LM, Mason RP. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable $Teflon^{(R)}$ bags and additions of isotopically labeled mercury. Anal. Chim. Acta. 2006;558:211-221. https://doi.org/10.1016/j.aca.2005.10.070
  57. Bash JO, Cooter EJ. Bidirectional mercury exchange over surface waters simulated by a regional air pollution model. 10th Conference on Atmospheric Chemistry. 2008.
  58. Qureshi A, O'Driscoll NJ, MacLeod M, Neuhold Y, Hungerbu hler K. Photoreactions of mercury in surface ocean water: Gross reaction kinetics and possible pathways. Environ. Sci. Technol. 2009;44:644-649. https://doi.org/10.1021/es9012728
  59. Soerensen AL, Sunderland EM, Holmes CD, et al. An improved global model for air-sea exchange of mercury: High concentrations over the North Atlantic. Environ. Sci. Technol. 2010;44:8574-8580. https://doi.org/10.1021/es102032g