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PRIMITIVE IDEALS AND PURE INFINITENESS OF

ULTRAGRAPH C∗-ALGEBRAS

Hossein Larki

Abstract. Let G be an ultragraph and let C∗(G) be the associated C∗-
algebra introduced by Tomforde. For any gauge invariant ideal I(H,B) of

C∗(G), we approach the quotient C∗-algebra C∗(G)/I(H,B) by the C∗-

algebra of finite graphs and prove versions of gauge invariant and Cuntz-

Krieger uniqueness theorems for it. We then describe primitive gauge
invariant ideals and determine purely infinite ultragraph C∗-algebras (in

the sense of Kirchberg-Rørdam) via Fell bundles.

1. Introduction

In order to bring graph C∗-algebras [7] and Exel-Laca algebras [6] together
under one theory, Tomforde introduced in [16] the notion of ultragraphs and as-
sociated C∗-algebras. An ultragraph is basically a directed graph in which the
range of each edge is allowed to be a nonempty set of vertices rather than a sin-
gle vertex. However, the class of ultragraph C∗-algebras are strictly lager than
the graph C∗-algebras as well as the Exel-Laca algebras (see [17, Section 5]).
Due to some similarities, some of fundamental results for graph C∗-algebras,
such as the Cuntz-Krieger and the gauge invariant uniqueness theorems, sim-
plicity, and K-theory computation have been extended to the setting of ultra-
graphs [16,17]. In particular, by constructing a specific topological quiver Q(G)
from an ultragraph G, Katsura et al. described some properties of the ultra-
graph C∗-algebra C∗(G) using those of topological quivers [10]. They showed
that every gauge invariant ideal of C∗(G) is of the form I(H,B) corresponding
to an admissible pair (H,B) in G.

Recall that for any gauge invariant ideal I(H,B) of a graph C∗-algebra C∗(E),
there is a (quotient) graph E/(H,B) such that C∗(E)/I(H,B)

∼= C∗(E/(H,B))
(see [1, 2]). So, the class of graph C∗-algebras contains such quotients, and
results and properties of graph C∗-algebras may be applied for their quotients.
For examples, some contexts such as simplicity, K-theory, primitivity, and topo-
logical stable rank are directly related to the structure of ideals and quotients.
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Unlike the C∗-algebras of graphs and topological quivers [13], there are no
known ways in the literature for describing quotients of an ultragraph C∗-
algebra by structure of the initial ultragraph. So, many graph C∗-algebra’s
techniques could not be applied for the ultragraph setting, causing some obsta-
cles in studying these C∗-algebras. The initial aim of this article is to analyze
the structure of the quotient C∗-algebras C∗(G)/I(H,B) for any gauge invariant
ideal I(H,B) of C∗(G). For the sake of convenience, we first introduce the no-
tion of quotient ultragraph G/(H,B) and a relative C∗-algebra C∗(G/(H,B))
such that C∗(G)/I(H,B)

∼= C∗(G/(H,B)) and then prove the gauge invariant
and the Cuntz-Krieger uniqueness theorems for C∗(G/(H,B)). The uniqueness
theorems help us to show when a representation of C∗(G)/I(H,B) is injective.
We see that the structure of C∗(G/(H,B)) is close to that of graph C∗-algebras
and we can use them to determine primitive gauge invariant ideals. Moreover,
in Section 6, we consider the notion of pure infiniteness for ultragraph C∗-
algebras in the sense of Kirchberg-Rørdam [11] which is directly related to the
structure of quotients. We should note that the initial idea for definition of
quotient ultragraphs has been inspired from [9].

The present article is organized as follows. We begin in Section 2 by giving
some definitions and preliminaries about the ultragraphs and their C∗-algebras
which will be used in the next sections. In Section 3, for any admissible pair
(H,B) in an ultragraph G, we introduce the quotient ultragraph G/(H,B) and
an associated C∗-algebra C∗(G/(H,B)). For this, the ultragraph G is modified
by an extended ultragraph G and we define an equivalent relation ∼ on G. Then

G/(H,B) is the ultragraph G with the equivalent classes {[A] : A ∈ G0}. In
Section 4, by approaching with graph C∗-algebras, the gauge invariant and the
Cuntz-Krieger uniqueness theorems will be proved for the quotient ultragraphs
C∗-algebras. Moreover, we see that C∗(G/(H,B)) is isometrically isomorphic
to the quotient C∗-algebra C∗(G)/I(H,B).

In Sections 5 and 6, using quotient ultragraphs, some graph C∗-algebra’s
techniques will be applied for the ultragraph C∗-algebras. In Section 5, we
describe primitive gauge invariant ideals of C∗(G), whereas in Section 6, we
characterize purely infinite ultragraph C∗-algebras (in the sense of [11]) via
Fell bundles [5, 12].

2. Preliminaries

In this section, we review basic definitions and properties of ultragraph C∗-
algebras which will be needed through the paper. For more details, we refer
the reader to [10] and [16].

Definition 2.1 ([16]). An ultragraph is a quadruple G = (G0,G1, rG , sG) con-
sisting of a countable vertex set G0, a countable edge set G1, the source map
sG : G1 → G0, and the range map rG : G1 → P(G0) \ {∅}, where P(G0) is
the collection of all subsets of G0. If rG(e) is a singleton vertex for each edge
e ∈ G1, then G is an ordinary (directed) graph.
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For our convenience, we use the notation G0 in the sense of [10] rather than
[16, 17]. For any set X, a nonempty subcollection of the power set P(X) is
said to be an algebra if it is closed under the set operations ∩, ∪, and \. If G
is an ultragraph, the smallest algebra in P(G0) containing {{v} : v ∈ G0} and
{rG(e) : e ∈ G1} is denoted by G0. We simply denote every singleton set {v}
by v. So, G0 may be considered as a subset of G0.

Definition 2.2. For each n ≥ 1, a path α of length |α| = n in G is a sequence
α = e1 . . . en of edges such that s(ei+1) ∈ r(ei) for 1 ≤ i ≤ n − 1. If also
s(e1) ∈ r(en), α is called a loop or a closed path. We write α0 for the set
{sG(ei) : 1 ≤ i ≤ n}. The elements of G0 are considered as the paths of
length zero. The set of all paths in G is denoted by G∗. We may naturally
extend the maps sG , rG on G∗ by defining sG(A) = rG(A) = A for A ∈ G0, and
rG(α) = rG(en), sG(α) = sG(e1) for each path α = e1 · · · en.

Definition 2.3 ([16]). Let G be an ultragraph. A Cuntz-Krieger G-family is
a set of partial isometries {se : e ∈ G1} with mutually orthogonal ranges and a
set of projections {pA : A ∈ G0} satisfying the following relations:

(UA1) p∅ = 0, pApB = pA∩B , and pA∪B = pA + pB − pA∩B for all A,B ∈ G0,
(UA2) s∗ese = prG(e) for e ∈ G1,

(UA3) ses
∗
e ≤ psG(e) for e ∈ G1, and

(UA4) pv =
∑
sG(e)=v ses

∗
e whenever 0 < |s−1

G (v)| <∞.

The C∗-algebra C∗(G) of G is the (unique) C∗-algebra generated by a universal
Cuntz-Krieger G-family.

By [16, Remark 2.13], we have

C∗(G) = span
{
sαpAs

∗
β : α, β ∈ G∗, A ∈ G0, and rG(α) ∩ rG(β) ∩A 6= ∅

}
,

where sα := se1 · · · sen if α = e1 · · · en, and sα := pA if α = A.

Remark 2.4. As noted in [16, Section 3], every graph C∗-algebra is an ultra-
graph C∗-algebra. Recall that if E = (E0, E1, rE , sE) is a directed graph, a
collection {se, pv : v ∈ E0, e ∈ E1} containing mutually orthogonal projections
pv and partial isometries se is called a Cuntz-Krieger E-family if

(GA1) s∗ese = prE(e) for all e ∈ E1,

(GA2) ses
∗
e ≤ psE(e) for all e ∈ E1, and

(GA3) pv =
∑
sE(e)=v ses

∗
e for every vertex v ∈ E0 with 0 < |s−1

E (v)| <∞.

We denote by C∗(E) the universal C∗-algebra generated by a Cuntz-Krieger
E-family.

By the universal property, C∗(G) admits the gauge action of the unit circle
T. By an ideal, we mean a closed two-sided ideal. Using the properties of
quiver C∗-algebras [10], the gauge invariant ideals of C∗(G) were characterized
in [10, Theorem 6.12] via a one-to-one correspondence with the admissible pairs
of G as follows.
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Definition 2.5. A subset H ⊆ G0 is said to be hereditary if the following
properties holds:

(H1) sG(e) ∈ H implies rG(e) ∈ H for all e ∈ G1.
(H2) A ∪B ∈ H for all A,B ∈ H.
(H3) If A ∈ H, B ∈ G0, and B ⊆ A, then B ∈ H.

Moreover, a subset H ⊆ G0 is called saturated if for any v ∈ G0 with 0 <
|s−1
G (v)| < ∞, then {rG(e) : sG(e) = v} ⊆ H implies v ∈ H. The saturated

hereditary closure of a subset H ⊆ G0 is the smallest hereditary and saturated
subset H of G0 containing H.

Let H be a saturated hereditary subset of G0. The set of breaking vertices
of H is denoted by

BH :=
{
w ∈ G0 : |s−1

G (w)| =∞ but 0 < |rG(s−1
G (w)) ∩ (G0 \H)| <∞

}
.

An admissible pair (H,B) in G is a saturated hereditary set H ⊆ G0 together
with a subset B ⊆ BH . For any admissible pair (H,B) in G, we define the
ideal I(H,B) of C∗(G) generated by

{pA : A ∈ G0} ∪
{
pHw : w ∈ B

}
,

where pHw := pw −
∑
sG(e)=w, rG(e)/∈H ses

∗
e. Note that the ideal I(H,B) is gauge

invariant and [10, Theoerm 6.12] implies that every gauge invariant ideal I of
C∗(G) is of the form I(H,B) by setting

H := {A : pA ∈ I} and B :=
{
w ∈ BH : pHw ∈ I

}
.

3. Quotient ultragraphs and their C∗-algebras

In this section, for any admissible pair (H,B) in an ultragraph G, we intro-
duce the quotient ultragraph G/(H,B) and its relative C∗-algebra C∗(G/(H,B)).
We will show in Proposition 4.6 that C∗(G/(H,B)) is isomorphic to the quo-
tient C∗-algebra C∗(G)/I(H,B).

Let us fix an ultragraph G = (G0,G0, rG , sG) and an admissible pair (H,B)
in G. For defining our quotient ultragraph G/(H,B), we first modify G by an
extended ultragraph G such that their C∗-algebras coincide. For this, add the
vertices {w′ : w ∈ BH \B} to G0 and denote A := A∪{w′ : w ∈ A∩ (BH \B)}
for each A ∈ G0. We now define the new ultragraph G = (G0,G1

, rG , sG) by

G
0

:= G0 ∪ {w′ : w ∈ BH \B},

G1
:= G1,

the source map

sG(e) :=

{
(sG(e))′ if sG(e) ∈ BH \B and rG(e) ∈ H
sG(e) otherwise,

and the rang map rG(e) := rG(e) for every e ∈ G1. In Proposition 3.3 below,
we will see that the C∗-algebras of G and G coincide.
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Example 3.1. Suppose G is the ultragraph

wu

v

A
f

(∞)

e

e

g

H

where (∞) indicates infinitely many edges. If H is the saturated hereditary
subset of G0 containing {v} and A, then we have BH = {w}. For B := ∅,
consider the admissible pair (H, ∅) in G. Then the ultragraph G associated to
(H, ∅) would be

w w′u

v

A

(∞)

f

e

e

g

e

H

Indeed, since BH \B = {w}, for constructing G we first add a vertex w′ to G.
We then define

rG(f) := A = A,

rG(e) := {v, w} = {v, w,w′}, and

rG(g) := {u} = {u}.

For the source map sG , for example, since sG(f) ∈ BH \ B and rG(f) ∈ H,
we may define sG(f) := w′. Note that the range of each edge emitted by w′

belongs to H.

As usual, we write G0
for the algebra generated by the elements of G

0 ∪
{rG(e) : e ∈ G1}. Note that A = A for every A ∈ H, and hence, H would

be a saturated hereditary subset of G0
as well. Moreover, the set of breaking

vertices of H in G coincides with B (meaning BGH = B).

Remark 3.2. Suppose that C∗(G) is generated by a Cuntz-Krieger G-family
{se, pA : A ∈ G0, e ∈ G1}. If a family M = {Se, Pv, PA : v ∈ G0, A ∈ G0, e ∈
G1} in a C∗-algebra X satisfies relations (UA1)-(UA4) in Definition 2.3, we

may generate a Cuntz-Krieger G-family N = {Se, PA : A ∈ G0
, e ∈ G1} in

X. For this, since G0
is the algebra generated by {v, w′, rG(e) : v ∈ G0, w ∈
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BH \B, e ∈ G
1}, we may use the definitions

PA∩C := PAPC ,

PA∪C := PA + PC − PAPC ,
PA\C := PA − PAPC ,

to generate each projection PA, A ∈ G0
, by finitely many operations. Then N

would be a Cuntz-Krieger G-family in X, and the C∗-subalgebras generated by
M and N coincide.

Proposition 3.3. Let G be an ultragraph, and let (H,B) be an admissible pair
in G. If G is the extended ultragraph as above, then C∗(G) ∼= C∗(G).

Proof. Suppose that C∗(G) = C∗(te, qA) and C∗(G) = C∗(se, pC). If we define

Pv := qv for v ∈ G0 \ (BH \B),
Pw :=

∑
sG(e)=w
rG(e)/∈H

tet
∗
e for w ∈ BH \B,

Pw′ := qw −
∑

sG(e)=w
rG(e)/∈H

tet
∗
e for w ∈ BH \B,

PA := qA for A ∈ G0
,

Se := te for e ∈ G1
,

then, by Remark 3.2, the family{
Pv, Pw, Pw′ , PA, Se : v ∈ G0 \ (BH \B), w ∈ BH \B, A ∈ G

0
, e ∈ G1

}
induces a Cuntz-Krieger G-family in C∗(G). Since all vertex projections of
this family are nonzero (which follows all set projections PA are nonzero for

∅ 6= A ∈ G0
), the gauge-invariant uniqueness theorem [16, Theorem 6.8] implies

that the ∗-homomorphism φ : C∗(G)→ C∗(G) with φ(p∗) = P∗ and φ(s∗) = S∗
is injective. On the other hand, the family generates C∗(G), and hence, φ is an
isomorphism. �

To define a quotient ultragraph G/(H,B), we use the following equivalent
relation on G.

Definition 3.4. Suppose that (H,B) is an admissible pair in G, and that G is

the extended ultragraph as above. We define the relation ∼ on G0
by

A ∼ C ⇐⇒ ∃V ∈ H such that A ∪ V = C ∪ V.
Note that A ∼ C if and only if both sets A \ C and C \A belong to H.

The following lemma may be proved by a tedious, but straightforward com-
putations.

Lemma 3.5. The relation ∼ is an equivalent relation on G0
. Furthermore, the

operations

[A] ∪ [C] := [A ∪ C], [A] ∩ [C] := [A ∩ C], and [A] \ [C] := [A \ C]
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are well-defined on the equivalent classes {[A] : A ∈ G0}.

Definition 3.6. Let G be an ultragraph, let (H,B) be an admissible pair
in G, and consider the equivalent relation of Definition 3.4 on the extended

ultragraph G = (G
0
,G1

, rG , sG). The quotient ultragraph of G by (H,B) is the
quintuple G/(H,B) = (Φ(G0),Φ(G0),Φ(G1), r, s), where

Φ(G0) :=
{

[v] : v ∈ G0 \H
}
∪ {[w′] : w ∈ BH \B} ,

Φ(G0) :=
{

[A] : A ∈ G0
}
,

Φ(G1) :=
{
e ∈ G1

: rG(e) /∈ H
}
,

and r : Φ(G1) → Φ(G0), s : Φ(G1) → Φ(G0) are the range and source maps
defined by

r(e) := [rG(e)] and s(e) := [sG(e)].

We refer to Φ(G0) as the vertices of G/(H,B).

Remark 3.7. Lemma 3.5 implies that Φ(G0) is the smallest algebra containing{
[v], [w′] : v ∈ G0 \H,w ∈ BH \B

}
∪
{

[rG(e)] : e ∈ G1
}
.

Notation.

(1) For every vertex v ∈ G0 \H, we usually denote [v] instead of [{v}].
(2) For A,C ∈ G0

, we write [A] ⊆ [C] whenever [A] ∩ [C] = [A].
(3) Through the paper, we will denote the range and the source maps of
G by rG , sG , those of G by rG , sG , and those of G/(H,B) by r, s.

Now we introduce representations of quotient ultragraphs and their relative
C∗-algebras.

Definition 3.8. Let G/(H,B) be a quotient ultragraph. A representation of
G/(H,B) is a set of partial isometries {Te : e ∈ Φ(G1)} and a set of projections
{Q[A] : [A] ∈ Φ(G0)} which satisfy the following relations:

(QA1) Q[∅] = 0, and for [A], [C] ∈ Φ(G0), Q[A∩C] = Q[A]Q[C] and Q[A∪C] =
Q[A] +Q[C] −Q[A∩C].

(QA2) T ∗e Tf = δe,fQr(e) for e, f ∈ Φ(G1).

(QA3) TeT
∗
e ≤ Qs(e) for e ∈ Φ(G1).

(QA4) Q[v] =
∑
s(e)=[v] TeT

∗
e , whenever 0 < |s−1([v])| <∞.

We denote by C∗(G/(H,B)) the universal C∗-algebra generated by a repre-
sentation {te, q[A] : [A] ∈ Φ(G0), e ∈ Φ(G1)} which exists by Theorem 3.10
below.

Note that if α = e1 · · · en is a path in G such that rG(α) /∈ H, then the
hereditary property of H yields rG(ei) /∈ H, and so ei ∈ Φ(G1) for all 1 ≤ i ≤ n.
In this case, we denote tα := te1 · · · ten . Moreover, we define

(G/(H,B))∗ := {[A] : [A] 6= [∅]} ∪
{
α ∈ G∗ : r(α) 6= [∅]

}
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as the set of finite paths in G/(H,B) and we can extend the maps s, r on
(G/(H,B))∗ by setting

s([A]) := r([A]) := [A] and s(α) := s(e1), r(α) := r(en).

The proof of next lemma is similar to the arguments of [16, Lemmas 2.8 and
2.9].

Lemma 3.9. Let G/(H,B) be a quotient ultragraph and let {Te, Q[A]} be a
representation of G/(H,B). Then any nonzero word in Te, Q[A], and T ∗f may
be written as a finite linear combination of the forms TαQ[A]T

∗
β for α, β ∈

(G/(H,B))∗ and [A] ∈ Φ(G0) with [A] ∩ r(α) ∩ r(β) 6= [∅].

Theorem 3.10. Let G/(H,B) be a quotient ultragraph. Then there exists a
(unique up to isomorphism) C∗-algebra C∗(G/(H,B)) generated by a universal
representation {te, q[A] : [A] ∈ Φ(G0), e ∈ Φ(G1)} for G/(H,B). Furthermore,

all the te’s and q[A]’s are nonzero for [∅] 6= [A] ∈ Φ(G0) and e ∈ Φ(G1).

Proof. By a standard argument similar to the proof of [16, Theorem 2.11],
we may construct such universal C∗-algebra C∗(G/(H,B)). Note that the
universality implies that C∗(G/(H,B)) is unique up to isomorphism. To show
the last statement, we generate an appropriate representation for G/(H,B) as
follows. Suppose C∗(G) = C∗(se, pA) and consider I(H,B) as an ideal of C∗(G)
by the isomorphism in Proposition 3.3. If we define{

Q[A] := pA + I(H,B) for [A] ∈ Φ(G0),
Te := se + I(H,B) for e ∈ Φ(G1),

then the family {Te, Q[A] : [A] ∈ Φ(G0), e ∈ Φ(G1)} is a representation for

G/(H,B) in the quotient C∗-algebra C∗(G)/I(H,B). Note that the definition
of Q[A]’s is well-defined. Indeed, if A1 ∪ V = A2 ∪ V for some V ∈ H, then
pA1

+ pV \A1
= pA2

+ pV \A2
and hence pA1

+ I(H,B) = pA2
+ I(H,B) by the facts

V \A1, V \A2 ∈ H.
Moreover, all elements Q[A] and Te are nonzero for [∅] 6= [A] ∈ Φ(G0),

e ∈ Φ(G1). In fact, if Q[A] = 0, then pA ∈ I(H,B) and we get A ∈ H by
[10, Theorem 6.12]. Also, since T ∗e Te = Qr(e) 6= 0, all partial isometries Te are
nonzero.

Now suppose that C∗(G/(H,B)) is generated by the family {te, q[A] : [A] ∈
Φ(G0), e ∈ Φ(G1)}. By the universality of C∗(G/(H,B)), there is a ∗-homo-
morphism φ : C∗(G/(H,B))→ C∗(G)/I(H,B) such that φ(te) = Te and φ(q[A])

= Q[A], and thus, all elements of {te, q[A] : [∅] 6= [A] ∈ Φ(G0), e ∈ Φ(G1)} are
nonzero. �

Note that, by a routine argument, one may obtain

C∗(G/(H,B)) = span
{
tαq[A]t

∗
β : α, β ∈ (G/(H,B))∗, r(α) ∩ [A] ∩ r(β) 6= [∅]

}
.
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4. Uniqueness theorems

After defining the C∗-algebras of quotient ultragraphs, in this section, we
prove the gauge invariant and the Cuntz-Krieger uniqueness theorems for them.
To do this, we approach to a quotient ultragraph C∗-algebra by graph C∗-
algebras and then apply the corresponding uniqueness theorems for graph C∗-
algebras. This approach is a developed version of the dual graph method of [14,
Section 2] and [16, Section 5] with more complications. In particular, we show
that the C∗-algebra C∗(G/(H,B)) is isomorphic to the quotient C∗(G)/I(H,B),
and the uniqueness theorems may applied for such quotients.

We fix again an ultragraph G, an admissible pair (H,B) in G, and the
quotient ultragraph G/(H,B) = (Φ(G0),Φ(G0),Φ(G1), r, s).

Definition 4.1. We say that a vertex [v] ∈ Φ(G0) is a sink if s−1([v]) = ∅. If
[v] only emits finitely many edges of Φ(G1), [v] is called a regular vertex. Any
non-regular vertex is called a singular vertex. The set of singular vertices in
Φ(G0) is denoted by

Φsg(G0) :=
{

[v] ∈ Φ(G0) : |s−1([v])| = 0 or ∞
}
.

Let F be a finite subset of Φsg(G0) ∪ Φ(G1). Write F 0 := F ∩ Φsg(G0) and
F 1 := F ∩ Φ(G1) = {e1, . . . , en}. We want to construct a special graph GF
such that C∗(GF ) is isomorphic to C∗(te, q[v] : [v] ∈ F 0, e ∈ F 1). For each
ω = (ω1, . . . , ωn) ∈ {0, 1}n \ {0n}, we write

r(ω) :=
⋂
ωi=1

r(ei) \
⋃
ωj=0

r(ej) and R(ω) := r(ω) \
⋃

[v]∈F 0

[v].

Note that r(ω) ∩ r(ν) = [∅] for distinct ω, ν ∈ {0, 1} \ {0n}. If

Γ0 :=
{
ω ∈ {0, 1}n \ {0n} : ∃[v1], . . . , [vm] ∈ Φ(G0) such that

R(ω) =

m⋃
i=1

[vi] and ∅ 6= s−1([vi]) ⊆ F 1 for 1 ≤ i ≤ m
}
,

we consider the finite set

Γ := {ω ∈ {0, 1}n \ {0n} : R(ω) 6= [∅] and ω /∈ Γ0} .

Now we define the finite graph GF = (G0
F , G

1
F , rF , sF ) containing the ver-

tices G0
F := F 0 ∪ F 1 ∪ Γ and the edges

G1
F :=

{
(e, f) ∈ F 1 × F 1 : s(f) ⊆ r(e)

}
∪
{

(e, [v]) ∈ F 1 × F 0 : [v] ⊆ r(e)
}

∪
{

(e, ω) ∈ F 1 × Γ : ωi = 1 when e = ei
}

with the source map sF (e, f) = sF (e, [v]) = sF (e, ω) = e, and the range map
rF (e, f) = f , rF (e, [v]) = [v], rF (e, ω) = ω.
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Proposition 4.2. Let G/(H,B) be a quotient ultragraph and let F be a finite
subset of Φsg(G0) ∪ Φ(G1). If C∗(G/(H,B)) = C∗(te, q[A]), then the elements

Qe := tet
∗
e, Q[v] := q[v](1−

∑
e∈F 1 tet

∗
e), Qω := qR(ω)(1−

∑
e∈F 1 tet

∗
e)

T(e,f) := teQf , T(e,[v]) := teQ[v], T(e,ω) := teQω

form a Cuntz-Krieger GF -family generating the C∗-subalgebra C∗(te, q[v] : [v] ∈
F 0, e ∈ F 1) of C∗(G/(H,B)). Moreover, all projections Q∗ are nonzero.

Proof. We first note that all the projections Qe, Q[v], and Qω are nonzero.

Indeed, each [v] ∈ F 0 is a singular vertex in G/(H,B), so Q[v] is nonzero.
Also, by definition, for every ω ∈ Γ we have ω /∈ Γ0 and R(ω) 6= [∅]. Hence,
for any ω ∈ Γ, if there is an edge f ∈ Φ(G1) \ F 1 with s(f) ⊆ R(ω), then
0 6= tf t

∗
f ≤ Qω. If there is a sink [w] such that [w] ⊆ R(ω) = r(ω) \

⋃
F 0, then

0 6= q[w] ≤ qR(ω)(1−
∑
e∈F 1 tet

∗
e) = Qω. Thus Qω is nonzero in either case. In

addition, the projections Qe, Q[v], and Qω are mutually orthogonal because of
the factor 1−

∑
e∈F 1 tet

∗
e and the definition of R(ω).

Now we show the collection {Tx, Qa : a ∈ G0
F , x ∈ G1

F } is a Cuntz-Krieger
GF -family by checking the relations (GA1)-(GA3) in Remark 2.4.

(GA1): Since Q[v], Qω ≤ qr(e) for (e, [v]), (e, ω) ∈ G1
F , we have

T ∗(e,f)T(e,f) = Qf t
∗
eteQf = tf t

∗
fqr(e)tf t

∗
f = tfqr(f)t

∗
f = Qf ,

T ∗(e,[v])T(e,[v]) = Q[v]t
∗
eteQ[v] = Q[v]qr(e)Q[v] = Q[v],

and

T ∗(e,ω)T(e,ω) = Qωt
∗
eteQω = Qωqr(e)Qω = Qω.

(GA2): This relation may be checked similarly.

(GA3): Note that any element of F 0∪Γ is a sink in GF . So, fix some ei ∈ F 1

as a vertex of G0
F . Write qF 0 :=

∑
[v]∈F 0 q[v]. We compute

(i) qr(ei)
∑
f∈F 1

s(f)⊆r(ei)

Qf = qr(ei)
∑
f∈F 1

s(f)⊆r(ei)

tf t
∗
f = qr(ei)

∑
f∈F 1

tf t
∗
f ;

(ii) qr(ei)
∑

[v]∈F 0,
[v]⊆r(ei)

Q[v] = qr(ei)
∑

[v]∈F 0

q[v](1−
∑
e∈F 1

tet
∗
e)

= qr(ei)qF 0(1−
∑
e∈F 1

tet
∗
e);

(iii)
∑

ω∈Γ,ωi=1

Qω =
∑

ω∈Γ,ωi=1

qR(ω)(1−
∑
e∈F 1

tet
∗
e) =

∑
ωi=1

qR(ω)(1−
∑
e∈F 1

tet
∗
e),

because
∑
ωi=1 qR(ω) = qr(ei)(1− qF 0).

We can use these relations to get∑
s(f)⊆r(ei)

T(ei,f) +
∑

[v]∈F 0, [v]⊆r(ei)

T(ei,[v]) +
∑

ω∈Γ, ωi=1

T(ei,ω)(4.1)
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= tei

(
qr(ei)

∑
e∈F 1

tet
∗
e + qr(ei)qF 0(

∑
e∈F 1

tet
∗
e) + qr(ei)(1− qF 0)(

∑
e∈F 1

tet
∗
e)

)

= teiqr(ei)

(∑
e∈F 1

tet
∗
e + (qF 0 + 1− qF 0)(1−

∑
e∈F 1

tet
∗
e)

)
= tei .

Now if ei is not a sink as a vertex in GF (i.e., |{x ∈ G1
F : sF (x) = ei}| > 0),

we conclude that∑
f∈F 1, s(f)⊆r(ei)

T(ei,f)T
∗
(ei,f) +

∑
[v]∈F 0, [v]⊆r(ei)

T(ei,[v])T
∗
(ei,[v])

+
∑

ω∈Γ, ωi=1

T(ei,ω)T
∗
(ei,ω)

=
∑

teiQf t
∗
ei +

∑
teiQ[v]t

∗
ei +

∑
teiQωt

∗
ei

= teiqr(ei)(
∑

Qf +
∑

Q[v] +
∑

Qω)t∗ei

= teit
∗
ei = Qei ,

which establishes the relation (GA3).
Furthermore, equation (4.1) in above says that tei ∈ C∗(T∗, Q∗) for every

ei ∈ F 1. Also, for each [v] ∈ F 0, we have

Q[v] +
∑

e∈F 1,s(e)=[v]

Qe = t[v](1−
∑
e∈F 1

tet
∗
e) +

∑
e∈F 1,s(e)=[v]

tet
∗
e

= t[v] − t[v]

∑
e∈F 1

tet
∗
e + t[v]

∑
e∈F 1

tet
∗
e

= t[v].

Therefore, the family {Tx, Qa : a ∈ G0
F , x ∈ G1

F } generates the C∗-subalgebra
C∗({te, q[v] : e ∈ F 1, [v] ∈ F 0}) of C∗(G/(H,B)) and the proof is complete. �

Corollary 4.3. If F is a finite subset of Φsg(G0) ∪ Φ(G1), then C∗(GF ) is
isometrically isomorphic to the C∗-subalgebra of C∗(G/(H,B)) generated by
{te, q[v] : [v] ∈ F 0, e ∈ F 1}.

Proof. Suppose that X is the C∗-subalgebra generated by {te, q[v] : [v] ∈
F 0, e ∈ F 1} and let {Tx, Qa : a ∈ G0

F , x ∈ G1
F } be the Cuntz-Krieger GF -

family in Proposition 4.2. If C∗(GF ) = C∗(sx, pa), then there exists a ∗-
homomorphism φ : C∗(GF ) → X with φ(pa) = Qa and φ(sx) = Tx for every
a ∈ G0

F , x ∈ G1
F . Since each Qa is nonzero by Proposition 4.2, the gauge

invariant uniqueness theorem implies that φ is injective. Moreover, the family
{Tx, Qa} generates X, so φ is an isomorphism. �
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Note that if F1 ⊆ F2 are two finite subsets of Φsg(G0)∪Φ(G1) and X1, X2 are
the C∗-subalgebras of C∗(G/(H,B)) associated to GF1

and GF2
, respectively,

we then have X1 ⊆ X2 by Proposition 4.2.

Remark 4.4. Using relations (QA1)-(QA4) in Definition 3.8, each q[A] for [A] ∈
Φ(G0), can be produced by the elements of

{q[v] : [v] ∈ Φsg(G0)} ∪ {te : e ∈ Φ(G1)}

with finitely many operations. So, the ∗-subalgebra of C∗(G/(H,B)) generated
by

{q[v] : [v] ∈ Φsg(G0)} ∪ {te : e ∈ Φ(G1)}
is dense in C∗(G/(H,B)).

As for graph C∗-algebras, we can apply the universal property to have a
strongly continuous gauge action γ : T→ Aut(C∗(G/(H,B))) such that

γz(te) = zte and γz(q[A]) = q[A]

for every [A] ∈ Φ(G0), e ∈ Φ(G1), and z ∈ T. Now we are ready to prove the
uniqueness theorems.

Theorem 4.5 (The Gauge Invariant Uniqueness Theorem). Let G/(H,B) be
a quotient ultragraph and let {Te, Q[A]} be a representation for G/(H,B) such
that Q[A] 6= 0 for [A] 6= [∅]. If πT,Q : C∗(G/(H,B)) → C∗(Te, Q[A]) is the
∗-homomorphism satisfying πT,Q(te) = Te, πT,Q(q[A]) = Q[A], and there is a
strongly continuous action β of T on C∗(Te, Q[A]) such that βz◦πT,Q = πT,Q◦γz
for every z ∈ T, then πT,Q is faithful.

Proof. Select an increasing sequence {Fn} of finite subsets of Φsg(G0) ∪Φ(G1)
such that ∪∞n=1Fn = Φsg(G0) ∪ Φ(G1). For each n, Corollary 4.3 gives an
isomorphism

πn : C∗(GFn
)→ C∗({te, q[v] : [v] ∈ F 0, e ∈ F 1})

that respects the generators. We can apply the gauge invariant uniqueness
theorem for graph C∗-algebras to see that the homomorphism

πT,Q ◦ πn : C∗(GFn
)→ C∗(Te, Q[A])

is faithful. Hence, for every Fn, the restriction of πT,Q on the ∗-subalgebra of
C∗(G/(H,B)) generated by {te, q[v] : [v] ∈ F 0

n , e ∈ F 1
n} is faithful. This turns

out that πT,Q is injective on the ∗-subalgebra C∗(te, q[v] : [v] ∈ Φsg(G0), e ∈
Φ(G1)). Since, this subalgebra is dense in C∗(G/(H,B)), we conclude that πT,Q
is faithful. �

Proposition 4.6. Let G be an ultragraph. If (H,B) is an admissible pair in
G, then C∗(G/(H,B)) ∼= C∗(G)/I(H,B).
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Proof. Using Proposition 3.3, we can consider I(H,B) as an ideal of C∗(G).

Suppose that C∗(G) = C∗(se, pA) and C∗(G/(H,B)) = C∗(te, q[A]). If we
define

Te := se + I(H,B) and Q[A] := pA + I(H,B)

for every [A] ∈ Φ(G0) and e ∈ Φ(G1), then the family {Te, Q[A]} is a rep-

resentation for G/(H,B) in C∗(G)/I(H,B). So, there is a ∗-homomorphism
φ : C∗(G/(H,B)) → C∗(G)/I(H,B) such that φ(te) = Te and φ(q[A]) = Q[A].
Moreover, all Q[A] with [A] 6= [∅] are nonzero because pA + I(H,B) = I(H,B)

implies A ∈ H. Then, an application of Theorem 4.5 yields that φ is faithful.
On the other hand, the family {Te, Q[A] : [A] ∈ Φ(G0), e ∈ Φ(G1)} generates
the quotient C∗(G)/I(H,B), and hence, φ is surjective as well. Therefore, φ is
an isomorphism and the result follows. �

To prove a version of Cuntz-Krieger uniqueness theorem, we extend Condi-
tion (L) for quotient ultragraphs.

Definition 4.7. We say that G/(H,B) satisfies Condition (L) if for every loop
α = e1 · · · en in G/(H,B), at least one of the following conditions holds:

(i) r(ei) 6= s(ei+1) for some 1 ≤ i ≤ n, where ei+1 := e1 (or equivalently,
r(ei) \ s(ei+1) 6= [∅]).

(ii) α has an exit; that means, there exists f ∈ Φ(G1) such that s(f) ⊆ r(ei)
and f 6= ei+1 for some 1 ≤ i ≤ n.

Lemma 4.8. Let F be a finite subset of Φsg(G0)∪Φ(G1). If G/(H,B) satisfies
Condition (L), then so does the graph GF .

Proof. Suppose that G/(H,B) satisfies Condition (L). As the elements of F 0∪
Γ are sinks in GF , every loop in GF is of the form α̃ = (e1, e2) · · · (en, e1)
corresponding with a loop α = e1 · · · en in G/(H,B). So, fix a loop α̃ =
(e1, e2) · · · (en, e1) in GF . Then α = e1 · · · en is a loop in G/(H,B) and by
Condition (L), one of the following holds:

(i) r(ei) 6= s(ei+1) for some 1 ≤ i ≤ n, where ei+1 := e1, or
(ii) there exists f ∈ Φ(G1) such that s(f) ⊆ r(ei) and f 6= ei+1 for some

1 ≤ i ≤ n.

We can suppose in the case (i) that s(ei+1) ( r(ei) and r(ei) emits only the
edge ei+1 in G/(H,B). Then, by the definition of Γ, there exists either [v] ∈ F 0

with [v] ⊆ r(ei) \ s(ei+1), or ω ∈ Γ with ωi = 1. Thus, either (ei, [v]) or (ei, ω)
is an exit for the loop α̃ in GF , respectively.

Now assume case (ii) holds. If f ∈ F 1, then (ei, f) is an exit for α̃. If f /∈ F 1,
for [v] := s(f) we have either [v] /∈ F 0 or

∃ω ∈ Γ with ωi = 1 such that [v] ⊆ R(ω).

Hence, (ei, [v]) or (ei, ω) is an exit for α̃, respectively. Consequently, in any
case, α̃ has an exit. �
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Theorem 4.9 (The Cuntz-Krieger Uniqueness Theorem). Suppose that
G/(H,B) is a quotient ultragraph satisfying Condition (L). If {Te, QA} is
a Cuntz-Krieger representation for G/(H,B) in which all the projection Q[A]

are nonzero for [A] 6= [∅], then the ∗-homomorphism πT,Q : C∗(G/(H,B)) →
C∗(Te, Q[A]) with πT,Q(te) = Te and πT,Q(q[A]) = Q[A] is an isometrically iso-
morphism.

Proof. It suffices to show that πT,Q is faithful. Similar to Theorem 4.5, choose
an increasing sequence {Fn} of finite sets such that ∪∞n=1Fn = Φsg(G0)∪Φ(G1).
By Corollary 4.3, there are isomorphisms πn : C∗(GFn

) → C∗({te, q[v] : [v] ∈
F 0
n , e ∈ F 1

n}) that respect the generators. Since all the graphs GFn
satisfy

Condition (L) by Lemma 4.8, the Cuntz-Krieger uniqueness theorem for graph
C∗-algebras implies that the ∗-homomorphisms

πT,Q ◦ πn : C∗(GFn
)→ C∗(Te, Q[A])

are faithful. Therefore, πT,Q is faithful on the subalgebra C∗(te, q[v] : [v] ∈
Φsg(G0), e ∈ Φ(G1)) of C∗(G/(H,B)). Since this subalgebra is dense in
C∗(G/(H,B)), we conclude that πT,Q is a faithful homomorphism. �

5. Primitive ideals in C∗(G)

In this section, we apply quotient ultragraphs to describe primitive gauge
invariant ideals of an ultragraph C∗-algebra. Recall that since every ultragraph
C∗-algebra C∗(G) is separable (as assumed G0 to be countable), a prime ideal
of C∗(G) is primitive and vice versa [3, Corollaire 1].

To prove Proposition 5.4 below, we need the following simple lemmas.

Lemma 5.1. Let G/(H,B) = (Φ(G0),Φ(G0),Φ(G1), r, s) be a quotient ultra-
graph of G. If G/(H,B) does not satisfy Condition (L), then C∗(G/(H,B))
contains an ideal Morita-equivalent to C(T).

Proof. Suppose that γ = e1 · · · en is a loop in G/(H,B) without exits and
r(ei) = s(ei+1) for 1 ≤ i ≤ n. If C∗(G/(H,B)) = C∗(te, q[A]), for each i we
have

t∗eitei = qr(ei) = qs(ei+1) = tei+1t
∗
ei+1

.

Write [v] := s(γ) and let Iγ be the ideal of C∗(G/(H,B)) generated by q[v].
Since γ has no exits in G/(H,B) and we have

qs(ei) = (tei · · · ten)q[v](t
∗
en · · · t

∗
ei) (1 ≤ i ≤ n),

an easy argument shows that

Iγ = span
{
tαq[v]t

∗
β : α, β ∈ (G/(H,B))∗, [v] ⊆ r(α) ∩ r(β)

}
.

So, we get
q[v]Iγq[v] = span

{
(tγ)nq[v](t

∗
γ)m : m,n ≥ 0

}
,

where (tγ)0 = (t∗γ)0 := q[v]. We show that q[v]Iγq[v] is a full corner in Iγ which is
isometrically isomorphic to C(T). For this, let E be the graph with one vertex
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w and one loop f . If we set Qw := q[v] and Tf := tγ (= tγq[v]), then {Tf , Qw}
is a Cuntz-Krieger E-family in q[v]Iγq[v]. Assume C∗(E) = C∗(sf , pw). Since
Qw 6= 0, the gauge-invariant uniqueness theorem for graph C∗-algebras implies
that the ∗-homomorphism φ : C∗(E)→ q[v]Iγq[v] with pw 7→ Qw and sf 7→ Tf
is faithful. Moreover, the C∗-algebra q[v]Iγq[v] is generated by {Tf , Qw}, and
hence φ is an isomorphism. As we know C∗(E) ∼= C(T), q[v]Iγq[v] is isomorphic
to C(T). Moreover, since q[v] generates Iγ , the corner q[v]Iγq[v] is full in Iγ .
Thus, Iγ is Morita-equivalent to q[v]Iγq[v]

∼= C(T) and the proof is complete. �

Lemma 5.2. If G/(H,B) satisfies Condition (L), then any nonzero ideal in
C∗(G/(H,B)) contains projection q[A] for some [A] 6= [∅].

Proof. Take an arbitrary ideal J in C∗(G/(H,B)). If there are no q[A] ∈ J
with [A] 6= [∅], then Theorem 4.9 implies that the quotient homomorphism
φ : C∗(G/(H,B))→ C∗(G/(H,B))/J is injective. Hence, we have J = kerφ =
(0). �

Definition 5.3. Let G be an ultragraph. For two sets A,C ∈ G0, we write
A ≥ C if either A ⊇ C, or there exists α ∈ G∗ with |α| ≥ 1 such that s(α) ∈ A
and C ⊆ r(α). We simply write A ≥ v, v ≥ C, and v ≥ w if A ≥ {v}, {v} ≥ C,
and {v} ≥ {w}, respectively. A subset M ⊆ G0 is said to be downward directed
whenever for every A1, A2 ∈M , there exists ∅ 6= C ∈M such that A1, A2 ≥ C.

Proposition 5.4. Let H be a saturated hereditary subset of G0. Then the ideal
I(H,BH) in C∗(G) is primitive if and only if the quotient ultragraph G/(H,BH)

satisfies Condition (L) and the collection G0 \H is downward directed.

Proof. Let I(H,BH) be a primitive ideal of C∗(G). Since C∗(G)/I(H,BH)
∼=

C∗(G/(H,BH)), the zero ideal in C∗(G/(H,BH)) is primitive. If G/(H,BH)
does not satisfy Condition (L), then C∗(G/(H,BH)) contains an ideal J Morita-
equivalent to C(T) by Lemma 5.1. Select two ideals I1, I2 in C(T) with I1∩I2 =
(0), and let J1, J2 be their corresponding ideals in J . Then J1 and J2 are two
nonzero ideals of C∗(G/(H,BH)) with J1∩J2 = (0), contradicting the primness
of C∗(G/(H,BH)). Therefore, G/(H,B) satisfies Condition (L).

Now we show that M := G0 \H is downward directed. For this, we take two
arbitrary sets A1, A2 ∈M and consider the ideals

J1 := C∗(G/(H,BH))q[A1]C
∗(G/(H,BH))

and

J2 := C∗(G/(H,BH))q[A2]C
∗(G/(H,BH))

in C∗(G/(H,BH)) generated by q[A1] and q[A2], respectively. Since A1, A2 /∈ H,
the projections q[A1], q[A2] are nonzero by Theorem 3.10, and so are the ideals
J1, J2. The primness of C∗(G/(H,BH)) implies that the ideal

J1J2 = C∗ (G/(H,BH)) q[A1]C
∗ (G/(H,BH)) q[A2]C

∗ (G/(H,BH))
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is nonzero, and hence q[A1]C
∗(G/(H,BH))q[A2] 6= {0}. As the set

span
{
tαq[D]t

∗
β : α, β ∈ (G/(H,B))∗, r(α) ∩ [D] ∩ r(β) 6= [∅]

}
is dense in C∗(G/(H,BH)), there exist α, β ∈ (G/(H,BH))∗ and [D] ∈ Φ(G0)
such that q[A1](tαq[D]t

∗
β)q[A2] 6= 0. In this case, we must have s(α) ⊆ [A1] and

s(β) ⊆ [A2] and thus, A1, A2 ≥ C for C := rG(α) ∩ D ∩ rG(β). Therefore,
G0 \H is downward directed.

For the converse, we assume that G/(H,BH) satisfies Condition (L) and the
collection M = G0 \ H is downward directed. Fix two nonzero ideals J1, J2

of C∗(G/(H,BH)). By Lemma 5.2, there are nonzero projections q[A1] ∈ J1

and q[A2] ∈ J2. Then A1, A2 /∈ H and, since M is downward directed, there
exists C ∈ M such that A1, A2 ≥ C. Hence, the ideal J1 ∩ J2 contains the
nonzero projection q[C]. Since J1 and J2 were arbitrary, this concludes that
the C∗-algebra C∗(G/(H,BH)) is primitive and I(H,BH) is a primitive ideal in
C∗(G) by Proposition 4.6. �

The following proposition describes another kind of primitive ideals in C∗(G).

Proposition 5.5. Let (H,B) be an admissible pair in G and let B = BH \{w}.
Then the ideal I(H,B) in C∗(G) is primitive if and only if A ≥ w for all A ∈
G0 \H.

Proof. Suppose that I(H,B) is a primitive ideal and take an arbitrary A ∈ G0\H.

If A := A ∪ {v′ : v ∈ A ∩ (BH \ B)}, then q[A] and q[w′] are two nonzero

projections in C∗(G/(H,B)). If we consider ideals J[A] := 〈q[A]〉 and J[w′] :=

〈q[w′]〉 in C∗(G/(H,B)), then the primness of C∗(G/(H,B)) ∼= C∗(G)/IH,B
implies that the ideal

J[A]J[w′] = C∗(G/(H,B))q[A]C
∗(G/(H,B))q[w′]C

∗(G/(H,B))

is nonzero, and hence q[A]C
∗(G/(H,B))q[w′] 6= {0}. So, there exist α, β ∈

(G/(H,B))∗ such that q[A]tαt
∗
βq[w′] 6= 0. Since [w′] is a sink in G/(H,B), we

must have q[A]tαq[w′] 6= 0. If |α| = 0, then [w′] ⊆ [A], w′ ∈ A and w ∈ A.

If |α| ≥ 1, then s(α) ⊆ [A] and [w′] ⊆ r(α), which follow sG(α) ∈ A and
w ∈ rG(α). Therefore, we obtain A ≥ w in either case.

Conversely, assume A ≥ w for every A ∈ G0 \H. Then the collection G0 \H
is downward directed. Moreover, for every [∅] 6= [A] ∈ Φ(G0), there exists
α ∈ (G/(H,B))∗ such that s(α) ⊆ [A] and [w′] ⊆ r(α). As [w′] is a sink
in G/(H,B), we see that the quotient ultragraph G/(H,B) satisfies Condition
(L). Now similar to the proof of Proposition 5.4, we can show that I(H,B) is a
primitive ideal. �

Recall that each loop in G/(H,B) comes from a loop in the initial ultragraph
G. So, to check Condition (L) for a quotient ultragraph G/(H,B), we can use
the following.
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Definition 5.6. Let H be a saturated hereditary subset of G0. For simplicity,
we say that a path α = e1 · · · en lies in G \H whenever rG(α) ∈ G0 \H. We also
say that α has an exit in G \H if either rG(ei) \ sG(ei+1) ∈ G0 \H for some i,
or there is an edge f with rG(f) ∈ G0 \H such that sG(f) = sG(ei) and f 6= ei,
for some 1 ≤ i ≤ n.

It is easy to verify that a quotient ultragraph G/(H,B) satisfies Condition
(L) if and only if every loop in G \H has an exit in G \H. Hence we have:

Theorem 5.7 (See [1, Theorem 4.7]). Let G be an ultragraph. A gauge in-
variant ideal I(H,B) of C∗(G) is primitive if and only if one of the following
holds:

(1) B = BH , G0 \H is downward directed, and every loop in G \H has an
exit in G \H.

(2) B = BH \ {w} for some w ∈ BH , and A ≥ w for all A ∈ G0 \H.

Proof. Let I(H,B) be a primitive ideal in C∗(G). Then

C∗(G/(H,B)) ∼= C∗(G)/I(H,B)

is a primitive C∗-algebra. We claim that |BH \ B| ≤ 1. Indeed, if w1, w2 are
two distinct vertices in BH \B, similar to the proof of Propositions 5.4 and 5.5,
the primitivity of C∗(G/(H,B)) implies that the corner q[w′

1]C
∗(G/(H,B))q[w′

2]

is nonzero. So, there exist α, β ∈ (G/(H,B))∗ such that q[w′
1]tαt

∗
βq[w′

2] 6= 0. But

we must have |α| = |β| = 0 because [w′1], [w′2] are two sinks in G/(H,B). Hence,
q[w′

1]q[w′
2] 6= 0 which is impossible because q[w′

1]q[w′
2] = q[{w′

1}∩{w′
2}] = q[∅] = 0.

Thus, the claim holds. Now we may apply Propositions 5.4 and 5.5 to obtain
the result. �

Following [10, Definition 7.1], we say that an ultragraph G satisfies Condition
(K) if every vertex v ∈ G0 either is the base of no loops, or there are at least
two loops α, β in G based at v such that neither α nor β is a subpath of the
other. In view of [10, Proposition 7.3], if G satisfies Condition (K), then all
ideals of C∗(G) are of the form I(H,B). So, in this case, Theorem 5.7 describes
all primitive ideals of C∗(G).

6. Purely infinite ultragraph C∗-algebras via Fell bundles

Mark Tomforde in [17] determined ultragraph C∗-algebras in which every
hereditary subalgebra contains infinite projections. Here, we consider the no-
tion of “pure infiniteness” in the sense of Kirchberg-Rørdam [11], and generalize
[8, Theorem 2.3] to ultragraph setting. In view of Proposition 3.14 and The-
orem 4.16 of [11], a (not necessarily simple) C∗-algebra A is purely infinite if
and only if for every a ∈ A+ \ {0} and closed two-sided ideal I E A, a + I
in the quotient A/I is either zero or infinite (in this case, a is called properly
infinite). Recall from [11, Definition 3.2] that an element a ∈ A+ \{0} is called
infinite if there is b ∈ A+ \ {0} such that a ⊕ b . a ⊕ 0 in the matrix algebra
M2(A).
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So, the notion of pure infiniteness is directly related to the structure of ideals
and quotients. In this section, we use the quotient ultragraphs to characterize
purely infinite ultragraph C∗-algebras. Briefly, we consider the natural Z-
grading (or Fell bundle) for C∗(G) and then apply the results of [12, Section 4]
for pure infiniteness of Fell bundles.

6.1. Condition (K) for G

To prove the main result of this section, Theorem 6.6, we need to show that
an ultragraph G satisfies Condition (K) if and only if every quotient ultragraph
G/(H,B) satisfies Condition (L).

Notation. Let α = e1 · · · en be a path in an ultragraph G. If β = ekek+1 · · · el
is a subpath of α, we simply write β ⊆ α; otherwise, we write β * α.

First, we show in the absence of Condition (K) for G that there is a quotient
ultragraph G/(H,B) which does not satisfy Condition (L). For this, let G
contain a loop γ = e1 · · · en such that there are no loops α with s(α) = s(γ),
α * γ, and γ * α. If γ0 := {sG(e1), . . . , sG(en)}, define

X :=
{
rG(α) \ γ0 : α ∈ G∗, |α| ≥ 1, sG(α) ∈ γ0

}
,

Y :=

{
n⋃
i=1

Ai : A1, . . . , An ∈ X,n ∈ N

}
,

and set
H0 :=

{
B ∈ G0 : B ⊆ A for some A ∈ Y

}
.

We construct a saturated hereditary subset H of G0 as follows: for any n ∈ N
inductively define

Sn :=
{
w ∈ G0 : 0 < |s−1

G (w)| <∞ and rG(s−1
G (w)) ⊆ Hn−1

}
and

Hn := {A ∪ F : A ∈ Hn−1 and F ⊆ Sn is a finite subset} .
Then we can see that the subset

H =

∞⋃
n=0

Hn =

{
A ∪ F : A ∈ H0 and F ⊆

∞⋃
n=1

Sn is a finite subset

}
is hereditary and saturated.

Lemma 6.1. Suppose that γ = e1 · · · en is a loop in G such that there are no
loops α with s(α) = s(γ) and α * γ, γ * α. If we construct the set H as above,
then H is a saturated hereditary subset of G0. Moreover, we have A ∩ γ0 = ∅
for every A ∈ H.

Proof. By induction, we first show that each Hn is a hereditary set in G. For
this, we check conditions (H1)-(H3) in Definition 2.5. To verify condition (H1)
for H0, let us take e ∈ G1 with sG(e) ∈ H0. Then sG(e) ∈ X and there is α ∈ G∗
such that sG(α) ∈ γ0 and sG(e) ∈ rG(α) \ γ0. Hence, sG(αe) = sG(α) ∈ γ0.
Moreover, we have rG(αe)∩γ0 = ∅ because the otherwise implies the existence
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of a path β ∈ G∗ with sG(β) = sG(γ) and β * γ, γ * β, contradicting the
hypothesis. It turns out

rG(e) = rG(αe) = rG(αe) \ γ0 ∈ X ⊆ H0.

Hence, H0 satisfies condition (H1). We may easily verify conditions (H2) and
(H3) for H0, so H0 is hereditary. Moreover, for every w ∈ Sn, the range of each
edge emitted by w belongs to Hn−1 by definition. Thus, we can inductively
check that each Hn is hereditary, and so is H = ∪∞n=1Hn. The saturation
property of H may be verified similar to the proof of [17, Lemma 3.12].

It remains to show A ∩ γ0 = ∅ for every A ∈ H. To do this, note that
A ∩ γ0 = ∅ for every A ∈ H0 because this property holds for all A ∈ X. We
claim that (∪∞n=1Sn)∩ γ0 = ∅. Indeed, if v = sG(ei) ∈ γ0 for some ei ∈ γ, then
rG(ei) ∩ γ0 6= ∅ and rG(ei) /∈ H0. Hence, {rG(e) : e ∈ G1, sG(e) = v} * H0

that turns out v /∈ S1. So, we have S1 ∩ γ0 = ∅. An inductive argument shows
Sn ∩ γ0 = ∅ for n ≥ 1, and the claim holds. Now since

H = ∪∞n=1Hn = {A ∪ F : A ∈ H0 and F ⊆ ∪∞n=1Sn is a finite subset} ,

we conclude that A ∩ γ0 = ∅ for all A ∈ H. �

Proposition 6.2. An ultragraph G satisfies Condition (K) if and only if for
every admissible pair (H,B) in G, the quotient ultragraph G/(H,B) satisfies
Condition (L).

Proof. Suppose that G satisfies Condition (K) and (H,B) is an admissible pair
in G. Let α = e1 · · · en be a loop in G/(H,B). Since α is also a loop in G, there
is a loop β = f1 · · · fm in G with sG(α) = sG(β), and neither α ⊆ β nor β ⊆ α.
Without loos of generality, assume e1 6= f1. By the fact sG(α) = sG(β) ∈ rG(β),
we have rG(β) /∈ H, and so rG(f1) /∈ H by the hereditary property of H.
Therefore, f1 is an exit for α in G/(H,B) and we conclude that G/(H,B)
satisfies Condition (L).

For the converse, suppose on the contrary that G does not satisfy Condition
(K). Then there exists a loop γ = e1 · · · en in G such that there are no loops
α with s(α) = s(γ), α * γ, and γ * α. As Lemma 6.1, construct a saturated
hereditary subset H of G0 and consider the quotient ultragraph G/(H,BH) =
(Φ(G0),Φ(G0),Φ(G1), r, s). We show that γ as a loop in G/(H,BH) has no
exits and r(ei) = s(ei+1) for 1 ≤ i ≤ n. If f is an exit for γ in G/(H,BH)
such that s(f) = s(ej) and f 6= ej , then rG(f) /∈ H and rG(f) ∩ γ0 6= ∅ (if
rG(f) ∩ γ0 = ∅, then rG(f) = rG(f) \ γ0 ∈ X ⊆ H, a contradiction). So,
there is el ∈ γ such that sG(el) ∈ rG(f). If we set α := e1 · · · ej−1fel · · · en,
then α is a loop in G with sG(α) = sG(γ), and α * γ, γ * α, that contradicts
the hypothesis. Therefore, γ has no exits in G/(H,BH). Moreover, we have
r(ei) ∩ [γ0] = s(ei+1) for each 1 ≤ i ≤ n, because the otherwise gives an exit
for γ in G/(H,BH) by the construction of H. Hence,

r(ei) \ s(ei+1) = r(ei) \ [γ0] = [∅]
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and we get r(ei) = s(ei+1) (note that the fact rG(ei) \ γ0 ∈ H implies r(ei) \
[γ0] = [rG(ei) \ γ0] = [∅]). Therefore, the quotient ultragraph G/(H,BH) does
not satisfy Condition (L) as desired. �

6.2. Purely infinite ultragraph C∗-algebras via Fell bundles

Every quotient ultragraph (or ultragraph) C∗-algebra

C∗(G/(H,B)) = C∗(q[A], te)

is equipped with a natural Z-grading or Fell bundle B = {Bn : n ∈ Z} with the
fibers

Bn := span
{
tµq[A]t

∗
ν : µ, ν ∈ (G/(H,B))∗, |µ| − |ν| = n

}
.

These Fell bundles will be considered in this section. The fiber B0 is the fixed
point C∗-subalgebra of C∗(G/(H,B)) for the gauge action which is an AF C∗-
algebra. An application of the gauge invariant uniqueness theorem implies that
C∗(G/(H,B)) is isomorphic to the cross sectional C∗-algebra C∗(B) (we refer
the reader to [5] for details about Fell bundles and their C∗-algebras). More-
over, since Z is an amenable group, combining Theorem 20.7 and Proposition
20.2 of [5] implies that C∗(G/(H,B)) is also isomorphic to the reduced cross
sectional C∗-algebra C∗r (B).

Following [4, Definition 2.1], an ideal in a Fell bundle B = {Bn} is a family
J = {Jn}n∈Z of closed subspaces Jn ⊆ Bn, such that BmJn ⊆ Jmn and
JnBm ⊆ Jnm for all m,n ∈ Z. If J is an ideal of B, then the family B/J :=
{Bn/Jn}n∈Z is equipped with a natural Fell bundle structure, which is called
a quotient Fell bundle of B, cf. [5, Definition 21.14].

Definition 6.3 ([12, Definition 4.1]). Let G/(H,B) be a quotient ultragraph
and B = {Bn}n∈Z is the above Fell bundle in C∗(G/(H,B)). We say that B is
aperiodic if for each n ∈ Z\{0}, each bn ∈ Bn, and every hereditary subalgebra
A of B0, we have

inf
{
‖abna‖ : a ∈ A+, ‖a‖ = 1

}
= 0.

Furthermore, B is called residually aperiodic whenever the quotient Fell bundle
B/J is aperiodic for every ideal J of B.

The following lemma is analogous to [12, Proposition 7.3] for quotient ultra-
graphs.

Lemma 6.4. Let G/(H,B) be a quotient ultragraph and let B = {Bn}n∈Z be
the Fell bundle associated to C∗(G/(H,B)). Then B is aperiodic if and only if
G/(H,B) satisfies Condition (L).

Proof. We may modify the proof of [12, Proposition 7.3] for our case by replac-
ing elements sαs

∗
β and sµs

∗
µ with tαq[A]t

∗
β and tµq[A]t

∗
µ, respectively. Then the

proof goes along the same lines as the one in [12, Proposition 7.3]. �
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Corollary 6.5. Let G be an ultragraph and let B = {Bn}n∈Z be the described
Fell bundle of C∗(G). If G satisfies Condition (K), then B is residually aperi-
odic.

Proof. Suppose that G satisfies Condition (K). In view of [10, Proposition 7.3],
we know that all ideals of C∗(G) are graded and of the form I(H,B). So, each
ideal J = {Jn}n∈Z of B is corresponding with an ideal I(H,B) with the ho-
mogenous components Jn := I(H,B) ∩ Bn. Moreover, the quotient Fell bundle
B/J := {Bn/Jn : n ∈ Z} is a grading (or a Fell bundle) for C∗(G)/I(H,B)

∼=
C∗(G/(H,B)). Therefore, quotient Fell bundles B/J are corresponding with
quotient ultragraphs G/(H,B). Since such quotient ultragraphs satisfy Condi-
tion (L) by Proposition 6.2, Lemma 6.4 follows the result. �

Theorem 6.6. Let G be an ultragraph. Then C∗(G) is purely infinite (in the
sense of [11]) if and only if G satisfies Condition (K), and for every saturated
hereditary subset H of G0, we have

(1) BH = ∅, and
(2) every A ∈ G0 \H connects to a loop α in G \H, which means A ≥ sG(α)

(see Definition 5.3).

Proof. First, suppose that C∗(G) is purely infinite. If G does not satisfy Con-
dition (K), by the second paragraph in the proof of Proposition 6.2, there
is a quotient ultragraph G/(H,B) containing a loop α ∈ (G/(H,B))∗ with
no exits in G/(H,B). The argument of Lemma 5.1 follows that the ideal
J := 〈qs(α)〉 E C∗(G/(H,B)) is Morita-equivalent to C(T). Hence, the pro-
jection ps(α) is not properly infinite which contradicts [11, Theorem 4.16].

Now assume that H is a saturated hereditary subset of G0. We consider
the quotient ultragraph G/(H, ∅) and take an arbitrary [A] ∈ Φ(G0) \ {[∅]}.
If there is no loops α ∈ r−1

G (G0 \ H) with A ≥ sG(α), then the ideal I[A] :=
〈q[A]〉 E C∗(G/(H, ∅)) is AF. Thus q[A] is not infinite and C∗(G) contains a
non-properly infinite projection, contradicting [11, Theorem 4.16]. Moreover,
we notice that for any w ∈ BH , [w′] is a sink in G/(H, ∅) and the projection
q[w′] is not infinite, which is impossible.

Conversely, suppose that G satisfies Condition (K) and the asserted prop-
erties hold for any saturated hereditary set H. To show that C∗(G) is purely
infinite we apply [12, Theorem 5.12] for the pure infiniteness of Fell bundles. Let
B = {Bn}n∈Z be the natural Fell bundle in C∗(G). Corollary 6.5 says that B is
residually aperiodic. Moreover, every projection in B0 is Murray-von Neumann
equivalent to a finite sum

∑n
i=1 risαi

pBi
s∗βi

of mutually orthogonal projections

such that |αi| = |βi| for 1 ≤ i ≤ n. Note that each projection sαi
pBi

s∗βi

is Murray-von Neumann equivalent to (sαipBi)
∗

(pBisβi) which equals to zero
unless αi = βi. Hence, in view of [12, Lemma 5.13], it suffices to show that
every nonzero projection of the form sµpBs

∗
µ is properly infinite.

Let I(H,∅) be an ideal in C∗(G) such that sµpBs
∗
µ /∈ I(H,∅). Then B∩rG(µ) ∈

G0 \H. Assume C∗(G/(H, ∅)) = C∗(te, q[A]) and let q : C∗(G)→ C∗(G/(H, ∅))
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be the canonical quotient map by Proposition 4.6. Then q(sµpBs
∗
µ) = tµq[B]t

∗
µ

6= 0. By hypothesis, there are a path λ and a loop α ∈ r−1
G (G0 \H) such that

sG(λ) ∈ B ∩ rG(µ) and sG(α) ∈ rG(λ). Since G satisfies Condition (K), α has
an exit f in r−1(G0 \H). Thus we have(

tαqs(α)

) (
tαqs(α)

)∗
+ tf t

∗
f ≤ qs(α),

and since (
tαqs(α)

) (
tαqs(α)

)∗ ∼ (tαqs(α)

)∗ (
tαqs(α)

)
= qs(α),

it turns out that qs(α) is an infinite projection in C∗(G/(H, ∅)) ∼= C∗(G)/I(H,∅).
On the other hand, the fact(

tµλqs(α)

)∗
tµq[B]t

∗
µ

(
tµλqs(α)

)
= qs(α)

says that qs(α) - tµq[B]t
∗
µ (see [15, Proposition 2.4]), and thus tµq[B]t

∗
µ is infinite

by [11, Lemma 3.17]. It follows that sµpBs
∗
µ is a properly infinite projection.

Now apply [12, Theorem 5.11(ii)] to conclude that the C∗-algebra C∗(G) ∼=
C∗r (B) is purely infinite. �
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