BIPACKING A BIPARTITE GRAPH WITH GIRTH AT

LEAST 12

Hong Wang

Abstract

Let G be a bipartite graph with (X, Y) as its bipartition Let B be a complete bipartite graph with a bipartition $\left(V_{1}, V_{2}\right)$ such that $X \subseteq V_{1}$ and $Y \subseteq V_{2}$. A bi-packing of G in B is an injection σ $V(G) \rightarrow V(B)$ such that $\sigma(X) \subseteq V_{1}, \sigma(Y) \subseteq V_{2}$ and $E(G) \cap E(\sigma(G))=\emptyset$. In this paper, we show that if G is a bipartite graph of order n with girth at least 12 , then there is a complete bipartite graph B of order $n+1$ such that there is a bi-packing of G in B. We conjecture that the same conclusion holds if the girth of G is at least 8 .

1. Introduction

For a graph G, we use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G, respectively. In this paper, we denote a bipartite graph G with a given bipartition (X, Y) by $G(X, Y)$, and for a bipartite graph, we always assume that it has been given a bipartition. If H is a subgraph of $G(X, Y)$, then the bipartition of H is given as $(V(H) \cap X, V(H) \cap Y)$. We use B_{n} to denote a complete bipartite graph of order n. Let $G(X, Y)$ and $H(U, W)$ be two bipartite graphs. Let $B_{n}\left(V_{1}, V_{2}\right)$ be such that $U \subseteq V_{1}$ and $W \subseteq V_{2}$. A bipacking of G and H in $B_{n}\left(V_{1}, V_{2}\right)$ is a bijection $\sigma: V(G) \rightarrow V\left(B_{n}\right)$ such that $\sigma(X) \subseteq V_{1}$, $\sigma(Y) \subseteq V_{2}$ and $E(H) \cap E(\sigma(G))=\emptyset$, where $\sigma(G)$ is the image of G under σ. If additionally $G=H$, we say that there is a bipacking of G in B_{n}. Fouquet and Wojda [4] showed that for any disconnected forest F of order n, there is a bipacking of F in a B_{n}. This result was also obtained by Sauer and Wang [7]. Two bipartite graphs $G(X, Y)$ and $H(U, W)$ are compatible if $|X|=|U|$ and $|Y|=|W|$. In [8], we proved the following:

Theorem A ([8]). Let D and F be two compatible disconnected forests of order n. Suppose that D and F can be partitioned into vertex-disjoint unions of subforests $D=D_{1} \cup D_{2}$ and $F=F_{1} \cup F_{2}$ such that D_{i} and F_{i} are compatible for $i=1,2$. Then there is a bipacking of D and F in a B_{n}.

In [9], we investigated a bipacking of two compatible bipartite graphs G and H of order n with $e(G)+e(H) \leq 2 n-2$, and we showed:

Theorem B ([9]). Let G and H be two compatible bipartite graphs of order n with $e(G)+e(H) \leq 2 n-2$. Suppose that each of G and H does not contain a cycle of length 4. Then there exists a complete bipartite graph B of order $n+1$ such that there is a bipacking of G and H in B unless one of G and H is the union of vertex-disjoint cycles and the other is the union of two vertex-disjoint stars.

In this paper, we investigate the bipacking of a bipartite graph G with girth at least 12. This work is motivated by a conjecture in [3] and the result in [2]. R. J. Faudree, C. C. Rousseau, R. H. Schelp and S. Schuster conjectured in [3] that if G is a graph of order n with girth at least 5 and maximum degree at most $n-2$, then there is an embedding of G in its complement. S. Brandt proved in [2] that if the girth of G is at least 7, then the conclusion holds. Görlich, Poliśniak, Woźniak and Ziolo provided a simpler proof of this result in [5], whose idea is adopted in our current work. For bipartite graphs, we conjecture the following:

Conjecture C. If G is a bipartite graph of order n with girth at least 8 , then there is a bipacking of G in a complete bipartitite graph of order $n+1$.

This conjecture holds for trees by Theorem B. Orchel characterized all the trees of order n that do not have bipackings in complete bipartite graphs of order n. There are three types of those trees and we refer readers to [6] for a list of them. In this paper, we will prove the following result:

Theorem D. If G is a bipartite graph of order n with girth at least 12, then there is a bipacking of G in a complete bipartitite graph of order $n+1$.

To prove Theorem D, we will prove Theorem E which is stronger than Theorem D. To state Theorem E, we define F_{n} to be a tree of order n with $n \geq 5$ such that F_{n} has a path $x_{1} x_{2} x_{3} x_{4}$ of order 4 and every vertex in $V\left(F_{n}\right)-$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an endvertex adjacent to x_{4}. We use $2 K_{2}$ to denote the graph of order 4 which consists of two independent edges. Let \mathcal{F} be a set of graphs such that a graph H belongs to \mathcal{F} if and only if either H is isomorphic to one of $2 K_{2}, P_{4}, P_{6}$ and F_{n} for some $n \geq 5$ or H has order 2 and each partite in the given bipartition of H is non-empty. Note that F_{5} is P_{5}. A bipacking σ of a bipartite graph G in a complete bipartite is called a fixed-point-free (FPF) bipacking if $\sigma(x) \neq x$ for all $x \in V(G)$. For convenience, we denote the order of a graph G by $|G|$. It is easy to check that each graph H in \mathcal{F} has a bipacking in a $B_{|H|+1}$ but does not have an FPF bipacking in a $B_{|H|+1}$.
Theorem E. If G is a bipartite graph of order n with girth at least 12, then there is an FPF bipacking of G in a complete bipartitite graph of order $n+1$ if and only if G does not belong to \mathcal{F}.

We discuss only finite simple graphs and use standard terminology and notation from [1] unless indicated otherwise. Here we define some special terminology and notation to be used in this paper. Let G be a graph. Let X be a subset of $V(G)$ or a subgraph of G. We define $G[X]$ to be the subgraph induced by the vertices belonging to X. If Y is a subset of $V(G)$ or a subgraph of G such that X and Y do not have any common vertex, then we define $E(X, Y)$ to be the set of edges between X and Y in G and let $e(X, Y)=|E(X, Y)|$. For a vertex x of G, we define $d(x, X)$ to be the number of neighbors of x in G that are contained in X. Thus $d(x, G)$ is the degree of x in G. For a subset Z of $V(G)$, let $N(Z)=\cup_{z \in Z} N(z)$. We use $|G|$ to denote the order of G.

A feasible path of G is an induced path of order 4 in G such that each of its two internal vertices has degree 2 in G. A feasible edge of G is an edge $x y$ of G such that $d_{G}(x)=d_{G}(y)=2$.

Note that the girth of a graph without cycles is defined to be infinity ∞.

2. Proof of Theorem E

On the contrary, we suppose that Theorem E fails. Let $G\left(X_{1}, X_{2}\right)$ be a bipartite graph with the smallest order such that the girth of G is at least 12 and $G \notin \mathcal{F}$ but G does not have an FPF bipacking in a B_{n+1}, where $n=|G|$. Let

$$
\begin{aligned}
& n_{1}=\left|X_{1}\right| \text { and } n_{2}=\left|X_{2}\right| \\
& \delta_{1}=\min _{x \in X_{1}} d(x) \text { and } \delta_{2}=\min _{x \in X_{2}} d(x) ; \\
& \Delta_{1}=\max _{x \in X_{1}} d(x) \text { and } \Delta_{2}=\max _{x \in X_{2}} d(x) .
\end{aligned}
$$

Clearly, $n=n_{1}+n_{2}, \delta(G)=\min \left\{\delta_{1}, \delta_{2}\right\}, n_{1} \geq 2$ and $n_{2} \geq 2$. Our proof consists of the following lemmas, which will lead to a contradiction.

Lemma 2.1. Let $k \geq 2$. If $x_{1}, x_{2}, \ldots, x_{k}$ are k distinct endvertices of G with a common neighbor, then $G-\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ does not have an FPF bipacking in a B_{n-k+1}.

Proof. If $G-\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ has an FPF bipacking σ in a B_{n-k+1}, then σ can be extended to an FPF bipacking of G in a B_{n+1} such that $\sigma\left(x_{i}\right)=x_{i+1}$ for all $i \in\{1, \ldots, k\}$ where $x_{k+1}=x_{1}$, a contradiction.

Lemma 2.2. The following two statements hold:
(a) There exists no $x \in V(G)$ such that $G-x$ has an FPF bipacking in a B_{n-1}.
(b) There exists no $z \in V(G)$ such that $G-z \in \mathcal{F}$.

Proof. If $G-x$ has an FPF bipacking σ in a B_{n-1} for some $x \in V(G)$, let w be a new vertex not in G and we extend σ with $\sigma(x)=w$. Then σ becomes an FPF bipacking of G in a B_{n+1}, a contradiction. Hence (a) holds.

To see (b), we suppose that $G-z \in \mathcal{F}$ for some $z \in V(G)$. If $|G-z|=2$, we readily see that G has an FPF bipacking in a B_{4}. Hence $n \geq 5$. Then we see that $d(z) \leq 1$ since $G \notin \mathcal{F}$ (in particular, $G \not \not P_{5}$) and $g(G) \geq 8$. Let w be a new vertex not in G. We define an injection $\sigma: V(G) \rightarrow V(G) \cup\{w\}$ with $\sigma(x) \neq x$ for all $x \in V(G)$ as follows.

First, assume that $G-z \cong 2 K_{2}$ or P_{4}. Let $x_{1} x_{2}$ and $x_{3} x_{4}$ be two edges of $G-z$ with $\left\{x_{1}, x_{3}\right\} \subseteq X_{1}$ such that $d_{G-z}\left(x_{1}\right)=d_{G-z}\left(x_{4}\right)=1$. As $d_{G}(z) \leq 1$ and $G \notin \mathcal{F}$, we may assume that $N_{G}(z) \subseteq\left\{x_{2}\right\}$ or $N_{G}(z) \subseteq\left\{x_{3}\right\}$. Say w.l.o.g. that $N_{G}(z) \subseteq\left\{x_{3}\right\}$ and x_{3} and z are not in the same partite of G. Let

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, z\right)=\left(x_{3}, w, x_{1}, z, x_{4}\right)
$$

Next, assume that $G-z \cong P_{6}$. Say $G-z=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$. If $N(z) \subseteq\left\{x_{1}\right\}$ or $N(z) \subseteq\left\{x_{6}\right\}$, say w.l.o.g. $N(z) \subseteq\left\{x_{6}\right\}$ and x_{6} and z are not in the same partite of G, let

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, z\right)=\left(x_{3}, w, x_{5}, x_{2}, z, x_{4}, x_{1}\right)
$$

If $N(z) \nsubseteq\left\{x_{1}, x_{6}\right\}$, then $N(z)=\left\{x_{i}\right\}$ for some $i \in\{2,3,4,5\}$. Say w.l.o.g. $N(z)=\left\{x_{i}\right\}$ with $i \in\{4,5\}$. Let

$$
\begin{aligned}
& \sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, z\right)=\left(x_{3}, x_{6}, x_{1}, w, z, x_{2}, x_{5}\right) \text { if } i=4 \\
& \sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, z\right)=\left(x_{3}, x_{6}, x_{1}, z, w, x_{2}, x_{4}\right) \text { if } i=5
\end{aligned}
$$

Finally, assume that $G-z \cong F_{n-1}$ with $n-1 \geq 5$. Say

$$
V(G-z)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

such that $x_{1} x_{2} x_{3} x_{4}$ is a path in G and $N_{G-z}\left(x_{4}\right)=\left\{x_{3}, a_{1}, a_{2}, \ldots, a_{k}\right\}$. Set $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $a_{k+1}=a_{1}$. Then $z x_{4} \notin E$ as $G \notin \mathcal{F}$. If $z x_{2} \in E$, then $k \geq 2$ as $G \notin \mathcal{F}$. Thus if $z x_{2} \in E$, we see that $G-A \notin \mathcal{F}$ and so $G-A$ has an FPF bipacking in a B_{6}, contradicting Lemma 2.1. Hence $z x_{2} \notin E$. Similarly, if $z x_{3} \in E$, then $k=1$. If $z x_{1} \in E$, then $k \geq 2$ as $G \not \equiv P_{6}$. If $N(z) \subseteq A$, we may assume that $N(z) \subseteq\left\{a_{k}\right\}$. Let
$\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, z, a_{1}, \ldots, a_{k}\right)=\left(a_{1}, z, a_{2}, w, x_{2}, a_{3}, \ldots, a_{k}, x_{1}, x_{3}\right)$ if $z x_{1} \in E ;$
$\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, a_{1}, z\right)=\left(x_{3}, w, a_{1}, z, x_{1}, x_{2}\right)$ if $z x_{3} \in E ;$
$\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, z, a_{1}, \ldots, a_{k}\right)=\left(x_{3}, z, x_{1}, w, x_{2}, a_{2}, \ldots, a_{k+1}\right)$ if $N(z) \subseteq\left\{a_{k}\right\}$.
In each of the above situations, we see that σ is an FPF bipacking of G in a B_{n+1}, a contradiction.

Lemma 2.3. Let $\{i, j\}=\{1,2\}$. Let $x \in X_{i}, Y=N_{G}(x)$ and $H=G-x$. Let σ be an FPF bipacking of H in a $B_{n}\left(V_{1}, V_{2}\right)$ with $X_{i}-\{x\} \subseteq V_{i}$ and $X_{j} \subseteq V_{j}$. Then $V_{i}-\{x\} \subseteq N_{\sigma(H)}(Y) \cup N_{H}(\sigma(Y))$. Moreover, there exists a subset $W \subseteq X_{j}$ such that

$$
|W|=\left|N_{G}(x)\right| \quad \text { and } \quad\left|N_{G-x}(W)\right| \geq \frac{1}{2}\left(n_{i}-1\right)
$$

Proof. For convenience, say $i=1$ and $j=2$. Assume that there exists $u \in$ $V_{1}-\{x\}$ such that $u \notin N_{\sigma(H)}(Y) \cup N_{H}(\sigma(Y))$. If $\sigma^{-1}(u)$ does not exist, then we obtain an FPF bipacking σ^{\prime} of G in $B_{n+1}\left(V_{1} \cup\{x\}, V_{2}\right)$ with $\sigma^{\prime}(x)=u$ and $\sigma^{\prime}(w)=\sigma(w)$ for all $w \in V(G)-\{x\}$, a contradiction. Therefore $\sigma^{-1}(u)$ exists. Let $v=\sigma^{-1}(u)$. Then we obtain an FPF bipacking σ^{\prime} of G in $B_{n+1}\left(V_{1} \cup\{x\}, V_{2}\right)$ with $\sigma^{\prime}(x)=u, \sigma^{\prime}(v)=x$ and $\sigma^{\prime}(w)=\sigma(w)$ for all $w \in V(G)-\{x, v\}$, a contradiction. Therefore $V_{1}-\{x\} \subseteq N_{\sigma(H)}(Y) \cup N_{H}(\sigma(Y))$. This implies that $n_{1}-1 \leq\left|N_{\sigma(H)}(Y)\right|+\left|N_{H}(\sigma(Y))\right|$. Let $A=\left\{z \in X_{2} \mid \sigma(z) \in Y\right\}$. Note that since $\left|X_{2}\right| \leq\left|V_{2}\right| \leq\left|X_{2}\right|+1$, we see that $|Y|-1 \leq|A| \leq|Y|$. Then $N_{\sigma(H)}(Y)=\sigma\left(N_{H}(A)\right)$ and so $n_{1}-1 \leq\left|N_{H}(A)\right|+\left|N_{H}(\sigma(Y))\right|$. Let $A \subseteq$ $A^{\prime} \subseteq X_{2}$ with $\left|A^{\prime}\right|=|Y|$. Then $n_{1}-1 \leq\left|N_{H}\left(A^{\prime}\right)\right|+\left|N_{H}(\sigma(Y))\right|$. Thus either $\left|N_{H}\left(A^{\prime}\right)\right| \geq\left(n_{1}-1\right) / 2$ or $\left|N_{H}(\sigma(Y))\right| \geq\left(n_{1}-1\right) / 2$. This means that the lemma holds with either $W=A^{\prime}$ or $W=\sigma(Y)$.

Corollary 2.4. $\delta(G)>0, n_{1} \leq 1+2 \delta_{1} \Delta_{2}$ and $n_{2} \leq 1+2 \delta_{2} \Delta_{1}$.
Proof. For each $x \in V(G)$, we see that $N(x) \neq \emptyset$ by Lemma 2.2 and Lemma 2.3. To see the inequality $n_{1} \leq 1+2 \delta_{1} \Delta_{2}$, we choose $x \in X_{1}$ with $d(x)=\delta_{1}$. By Lemma 2.3, $\left(n_{1}-1\right) / 2 \leq \delta_{1} \Delta_{2}$, i.e., $n_{1} \leq 1+2 \delta_{1} \Delta_{2}$. Similarly, $n_{2} \leq$ $1+2 \delta_{2} \Delta_{1}$.

Corollary 2.5. If x is an endvertex of G and y is the neighbor of x, then $d_{G}(y) \leq 2$.

Proof. Say $x \in X_{1}$. By Lemma 2.2, $G-x \notin \mathcal{F}$. Then $G-x$ has an FPF bipacking σ in a $B_{n}\left(V_{1}, V_{2}\right)$ with $X_{1}-\{x\} \subseteq V_{1}$ and $X_{2} \subseteq V_{2}$. By Lemma 2.3, we see, with $Y=\{y\}$ and $H=G-x$, that $V_{1}-\{x\} \subseteq N_{\sigma(G-x)}(y) \cup N_{G-x}(\sigma(y))$. Then $N_{G-x}(y) \subseteq N_{G-x}(\sigma(y))$. As $g(G)>4$, it follows that $\left|N_{G-x}(y)\right| \leq 1$ and so $d_{G}(y) \leq 2$.

Lemma 2.6. If P is a path of order $t \geq 8$ from x to y, then there is an $F P F$ bipacking τ of P in a B_{t} such that $\tau(x) \tau(y) \notin E(P)$.

Proof. Say $P=x_{1} y_{1} \cdots x_{k} y_{k}$ if $t=2 k$ and $P=x_{1} y_{1} \cdots x_{k} y_{k} x_{k+1}$ if $t=2 k+1$. Let $x_{[t / 2\rceil+1}=x_{1}$ and $y_{0}=y_{\lfloor t / 2\rfloor}$. Let τ be defined as follows:
$\tau\left(x_{i}\right)=x_{i+1}$ for $i \in\{1,2, \ldots,\lceil t / 2\rceil\}$ and $\tau\left(y_{j}\right)=y_{j-1}$ for $j \in\{1,2, \ldots,\lfloor t / 2\rfloor\}$.
It is easy to see that τ satisfies the requirement.
Corollary 2.7. Every bipartite graph $H\left(V_{1}, V_{2}\right)$ of order $n \geq 8$ with girth at least $8, \Delta(H) \leq 2$ and $\| V_{1}\left|-\left|V_{2}\right| \leq 1\right.$ has an FPF bipacking in a B_{n}.

With Corollary 2.7 and Lemma 2.2(a), we obtain:
Corollary 2.8. There exists no $x \in V(G)$ such that $G-x$ is a linear forest of order at least 8 with $\| V(G-x) \cap X_{1}\left|-\left|V(G-x) \cap X_{2}\right|\right| \leq 1$.

Lemma 2.9. The graph G does not contain two vertex-disjoint feasible paths.

Proof. On the contrary, say the lemma fails. Let $P=x_{1} x_{2} x_{3} x_{4}$ and $Q=$ $y_{1} y_{2} y_{3} y_{4}$ be two vertex-disjoint feasible paths with $\left\{x_{1}, y_{1}\right\} \subseteq X_{1}$. Let $H=$ $G-V(P \cup Q)$. Assume for the moment that $H \notin \mathcal{F}$. Let σ be an FPF bipacking of H in a $B_{n-7}\left(V_{1}, V_{2}\right)$ with $X_{1}-\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\} \subseteq V_{1}$ and $X_{2}-\left\{x_{2}, x_{4}, y_{2}, y_{4}\right\} \subseteq$ V_{2}. We extend σ to an FPF bipacking of G in $B_{n+1}\left(V_{1} \cup\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\}, V_{2} \cup\right.$ $\left.\left\{x_{2}, x_{4}, y_{2}, y_{4}\right\}\right)$ by setting

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(y_{3}, x_{4}, x_{1}, y_{2}, x_{3}, y_{4}, y_{1}, x_{2}\right)
$$

This contradicts the assumption on G.
Therefore $H \in \mathcal{F}$. Let w be a new vertex not in G. Since $g(G) \geq$ 12, we see that if $|H|=2$, then $\left|V(H) \cap X_{1}\right|=\left|V(H) \cap X_{2}\right|=1$ and $e\left(\left\{x_{1}, x_{4}, y_{1}, y_{4}\right\}, H\right)+e(H) \leq 3$ and if H is one of $P_{2}, P_{4}, P_{5}, P_{6}$ and F_{n}, then $e\left(\left\{x_{1}, x_{4}, y_{1}, y_{4}\right\}, H\right) \leq 2$. Moreover, with Corollary 2.7, we see that if H is $2 K_{2}$, then $e\left(\left\{x_{1}, x_{4}, y_{1}, y_{4}\right\}, H\right) \leq 3$. By Corollary 2.7 and Corollary 2.8, we readily see that $|H| \neq 2$ and $H \neq 2 K_{2}$. We shall construct an FPF bipacking σ of G in a B_{n+1}.

First, assume that H is one of P_{4}, P_{5} and P_{6}. By Corollary 2.8, we see that H contains two distinct vertices v_{1} and v_{2} such that $d_{G}\left(v_{1}\right) \geq 3$ and $d_{G}\left(v_{2}\right) \geq 3$ and each endvertex of H is still an endvertex of G. By Corollary 2.5 and as $g(G) \geq 8$, it follows that H is a path $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$ such that $d\left(a_{3}, P\right)=1$ and $d\left(a_{4}, Q\right)=1$. Say w.l.o.g. that $a_{1} \in X_{1}, a_{3} x_{4} \in E$ and $a_{4} y_{1} \in E$. Let σ be a bijection of $V(G)$ such that

$$
\begin{aligned}
& \sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \\
= & \left(a_{3}, y_{2}, a_{5}, x_{2}, y_{3}, a_{4}, x_{3}, a_{2}, x_{1}, y_{4}, y_{1}, a_{6}, a_{1}, x_{4}\right) .
\end{aligned}
$$

It is easy to check that σ is an FPF bipacking of G in a B_{14}, a contradiction.
Therefore $H \cong F_{n}$ with $n \geq 6$. Let $a_{1} a_{2} a_{3} a_{4}$ be the path of H with $d_{H}\left(a_{4}\right) \geq$ 3. Let A be the set of endvertices of H that are adjacent to a_{4}. By Corollary 2.5, no vertex of A is an endendvertex of G. Thus $e(A, P \cup Q) \geq|A| \geq 2$. As $g(G) \geq 8$, we see that $|A|=2$ and $G\left[V(P \cup Q) \cup A \cup\left\{a_{4}\right\}\right]$ is a path of order 11. By Lemma 2.6, $G\left[V(P \cup Q) \cup A \cup\left\{a_{4}\right\}\right]$ has an FPF bipacking σ in a B_{11}. Then we readily extend σ to an FPF of G in a B_{15} by setting $\sigma\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{3}, w, a_{1}\right)$, a contradiction.

Lemma 2.10. Let $\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\}$ be three independent edges in G such that $d\left(x_{i}\right)=1$ for all $1 \leq i \leq 3$ and either $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X_{1}$ or $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X_{2}$. Then $G-\left\{x_{1}, x_{2}, x_{3}\right\}$ does not have an FPF bipacking in a B_{n-2}.

Proof. Say $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X_{1}$. Let $H=G-\left\{x_{1}, x_{2}, x_{3}\right\}$. On the contrary, say H has an FPF bipacking σ in $B_{n-2}\left(V_{1}, V_{2}\right)$ with $X_{1}-\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq V_{1}$ and $X_{2} \subseteq V_{2}$. By Corollary 2.5, $d\left(y_{i}\right) \leq 2$ for all $1 \leq i \leq 3$. Since G does not have an FPF bipacking in a B_{n+1}, it is easy to see that $\left|X_{1}\right| \geq 5$.

We first suppose that $\sigma\left(\left\{y_{1}, y_{2}, y_{3}\right\}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$. Say w.l.o.g. that

$$
\sigma\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{2}, y_{3}, y_{1}\right) .
$$

Then we obtain an FPF bipacking of G in $B_{n+1}\left(V_{1} \cup\left\{x_{1}, x_{2}, x_{3}\right\}, V_{2}\right)$ by extending σ such that $\sigma\left(x_{1}\right)=x_{3}, \sigma\left(x_{2}\right)=x_{1}$ and $\sigma\left(x_{3}\right)=x_{2}$ Similarly, if $\left\{y_{i}, y_{j}\right\} \neq \sigma\left(\left\{y_{i}, y_{j}\right\}\right)$ for each $\{i, j\} \subseteq\{1,2,3\}$ with $i \neq j$, then we can easily see that σ can be extended to an FPF bipacking of G in a B_{n+1} with $\sigma\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Therefore we may assume w.l.o.g. that $\sigma\left(y_{1}\right)=$ $y_{2}, \sigma\left(y_{2}\right)=y_{1}$ and $\sigma\left(y_{3}\right) \neq y_{3}$. Assume for the moment that V_{1} has a vertex z such that $y_{1} z \notin E(H) \cup E(\sigma(H))$. If $\sigma^{-1}(z)$ does not exist, let $\tau\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, z, x_{1}\right)$ and $\tau(u)=\sigma(u)$ for all $u \in V(H)$. If $\sigma^{-1}(z)=v$ for some $v \in V_{1}$, let $\tau\left(v, x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{3}, z, x_{2}\right)$ and $\tau(u)=\sigma(u)$ for all $u \in V(H)-\{v\}$. It is easy to see that τ is an FPF bipacking of G in $B_{n+1}\left(V_{1} \cup\left\{x_{1}, x_{2}, x_{3}\right\}, V_{2}\right)$ in either case, a contradiction.

Therefore we may assume that $V_{1} \subseteq N_{H}\left(y_{1}\right) \cup N_{\sigma(H)}\left(y_{1}\right)$. As $d_{H}\left(y_{1}\right) \leq 1$ and $d_{\sigma(H)}\left(y_{1}\right)=d_{H}\left(y_{2}\right) \leq 1$, we obtain $\left|V_{1}\right| \leq 2$. As $\left|X_{1}\right| \geq 5$, it follows that $\left|V_{1}\right|=2, d_{H}\left(y_{1}\right)=d_{H}\left(y_{2}\right)=1$. Say $V_{1}=\left\{z_{1}, z_{2}\right\}$ with $y_{1} z_{1} \in E(H)$ and $y_{1} z_{2} \in E(\sigma(H))$. It follows that $\sigma\left(z_{1}\right)=z_{2}, \sigma\left(z_{2}\right)=z_{1}$ and $z_{1} y_{2} \in E(H)$.

If $z_{2} \sigma\left(y_{3}\right) \notin E(H)$, let $\tau\left(y_{1}, y_{3}, x_{1}, x_{2}, x_{3}\right)=\left(\sigma\left(y_{3}\right), y_{2}, x_{2}, x_{3}, x_{1}\right)$ and $\tau(u)=$ $\sigma(u)$ for all $u \in V(H)-\left\{y_{1}, y_{3}, x_{1}, x_{2}, x_{3}\right\}$. Then τ is an FPF bipacking of G in a B_{n+1}, a contradiction. Therefore $z_{2} \sigma\left(y_{3}\right) \in E(H)$. Then $y_{3} z_{1} \notin E(H)$. Let w be a new vertex not in G. We may choose an FPF bijection of X_{2} such that $\tau\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{3}, \sigma\left(y_{3}\right), y_{1}\right)$, and then extend τ to X_{1} such that $\tau\left(z_{1}, z_{2}, x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, w, z_{1}, x_{3}, x_{2}\right)$. It is easy to see that τ is an FPF bipacking of G in $B_{n+1}\left(X_{1} \cup\{w\}, X_{2}\right)$.

Lemma 2.11. There exist no three endvertices in G.
Proof. On the contrary, say that G has three endvertices x_{1}, x_{2} and x_{3}. We first show that no two of them are adjacent. If this is not the case, say $x_{1} x_{2} \in E$ with $x_{1} \in X_{1}$. Let $G^{\prime}=G-\left\{x_{1}, x_{2}\right\}$. If $G^{\prime} \in \mathcal{F}$, it is easy to find that G has an FPF bipacking in a B_{n+1}, a contradiction. Therefore $G^{\prime} \notin \mathcal{F}$ and so G^{\prime} has an FPF bipacking τ in a $B_{n-1}\left(V_{1}, V_{2}\right)$ with $X_{i}-\left\{x_{i}\right\} \subseteq V_{i}$ for $i \in\{1,2\}$. We may assume w.l.o.g. that $V_{1}=\left(X_{1}-\left\{x_{1}\right\}\right) \cup\{w\}$ with $w \notin V(G)$. Then $X_{2}-\left\{x_{2}\right\}=V_{2}$. Since $\left|V_{1}\right|=\left|X_{1}-\left\{x_{1}\right\}\right|+1$, there exists $v \in V_{1}$ such that $v \notin \tau\left(X_{1}-\left\{x_{1}\right\}\right)$. If $u v \notin E$ for some $u \in X_{2}$, then we obtain an FPF bipacking of G in a B_{n+1} by letting $\sigma\left(x_{1}, x_{2}, \tau^{-1}(u)\right)=\left(v, u, x_{2}\right)$ and $\sigma(z)=\tau(z)$ for all $z \in V(G)-\left\{x_{1}, x_{2}, \tau^{-1}(u)\right\}$, a contradiction. Therefore $N_{G}(v)=V_{2}$. As $g(G) \geq 6$, each vertex of $X_{1}-\{v\}$ has degree at most 1 . Then by Corollary 2.5 , each vertex in $X_{2}-\left\{x_{2}\right\}$ has degree at most 2 . Then we readily see that G has an FPF bipacking of G in a B_{n+1}, a contradiction.

Therefore no two of x_{1}, x_{2} and x_{3} are adjacent. By Corollary 2.4 and Corollary 2.5, there are three vertices y_{1}, y_{2} and y_{3} of degree 2 , such that $\left\{x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\} \subseteq E$. We claim that y_{1}, y_{2} and y_{3} are distinct. If this is not true, say $y_{1}=y_{2}$. By Lemma 2.1, we see that $G-x_{1}-x_{2} \in \mathcal{F}$. As y_{1} is an isolated vertex of $G-x_{1}-x_{2}$, we see that $G-x_{1}-x_{2}$ consists of two isolated vertices and obviously, G has an FPF bipacking in a B_{5}, a contradiction. Hence the claim holds.

If $G-\left\{x_{1}, x_{2}, x_{3}\right\} \in \mathcal{F}$, then we readily see that either $G-\left\{x_{1}, x_{2}, x_{3}\right\} \cong 2 K_{2}$ or $G-\left\{x_{1}, x_{2}, x_{3}\right\} \cong F_{n-3}$ by Corollary 2.5 and in this case, we also readily see that G has an FPF bipacking of G in a B_{n+1}, a contradiction. Thus $G-\left\{x_{1}, x_{2}, x_{3}\right\} \notin \mathcal{F}$. Then by Lemma 2.10, we obtain $\left\{x_{1}, x_{2}, x_{3}\right\} \nsubseteq X_{i}$ for $i \in\{1,2\}$. Say w.l.o.g. $\left\{x_{1}, x_{2}\right\} \subseteq X_{1}$ and $x_{3} \in X_{2}$. Say $N\left(y_{i}\right)=\left\{x_{i}, z_{i}\right\}$ for $i \in\{1,2,3\}$.

Note that this argument says that neither of X_{1} and X_{2} contains three endvertices of G.

Let $H=G-\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. First, assume that $H \notin \mathcal{F}$. Then H has an FPF bipacking τ in a $B_{n-5}\left(V_{1}, V_{2}\right)$. If $\left\{z_{1}, z_{2}\right\} \neq\left\{\tau\left(z_{1}\right), \tau\left(z_{2}\right)\right\}$, say $\tau\left(z_{2}\right) \notin\left\{z_{1}, z_{2}\right\}$, we extend τ to an FPF bipacking of G in a B_{n+1} by letting $\tau\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=\left(x_{2}, x_{3}, y_{3}, y_{1}, y_{2}, x_{1}\right)$, a contradiction. Therefore $\tau\left(z_{1}, z_{2}\right)=\left(z_{2}, z_{1}\right)$. In this situation, we obtain an FPF bipacking of G in a B_{n+1} by letting $\sigma\left(z_{1}, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=\left(x_{1}, y_{3}, y_{2}, z_{2}, x_{3}, y_{1}, x_{2}\right)$ and $\sigma(u)=\tau(u)$ for all $u \in V(G)-\left\{z_{1}, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right\}$, a contradiction.

Therefore $H \in \mathcal{F}$. If $|H|=2$, it is easy to see that G has an FPF bipacking in a B_{9}. Assume that $|H|=4$. Let $a_{1} a_{2}$ and $a_{3} a_{4}$ be the two independent edges of H such that $\left\{a_{1}, a_{3}\right\} \subseteq X_{1}$ and if $H \cong P_{4}$, then $a_{2} a_{3} \in E$. Since X_{1} does not contain three endvertices of $G, a_{1} \in\left\{z_{1}, z_{2}\right\}$. Say w.l.o.g. that $a_{1}=z_{1}$. If $a_{2} a_{3} \notin E$, then $z_{2}=a_{3}$ and so G is a linear forest. Consequently, G has an FPF bipacking in a B_{10} by Corollary 2.8, a contradiction. Hence $a_{2} a_{3} \in E$. If $a_{4}=z_{3}$, i.e., $a_{4} y_{3} \in E$, then $x_{3} y_{3} a_{4} a_{3}$ is feasible and so $x_{1} y_{1} a_{1} a_{2}$ is not feasible by Lemma 2.9. Thus $z_{2}=a_{1}$. If $z_{3}=a_{2}$ and so a_{4} is an endvertex of G and by Corollary 2.5, we see that $z_{2}=a_{1}$. In any case, $G-a_{1}$ is a linear forest and so $G-a_{1}$ has an FPF bipacking σ in a B_{9}, contradicting Corollary 2.8.

Similar to the above argument, it is easy to see that if $H \cong P_{6}$, then there exists a labelling $H=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$ such that $\left\{y_{1} a_{1}, y_{2} a_{1}, y_{3} a_{4}\right\} \subseteq E$. Then σ is an FPF bipacking of G in a B_{12} where

$$
\begin{aligned}
& \sigma\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right) \\
= & \left(x_{1}, y_{2}, a_{5}, x_{3}, a_{3}, y_{1}, a_{1}, a_{4}, y_{3}, a_{2}, a_{6}, x_{2}\right),
\end{aligned}
$$

a contradiction.
Therefore $H \cong F_{k}$ with $k=n-6 \geq 5$. Since X_{i} does not contain three endvertices of G for each $i \in\{1,2\}$ and each endvertex of G is adjacent to a vertex of degree 2 in G, it is easy to see that $H \cong P_{5}$. Furthermore, with Corollary 2.8, we see that there is a labelling $H=a_{1} a_{2} a_{3} a_{4} a_{5}$ such that $\left\{y_{1} a_{2}, y_{2} a_{2}, y_{3} a_{1}\right\} \subseteq E$. Then σ is an FPF bipacking of G in a B_{12} where
$\sigma\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)=\left(y_{1}, w, a_{1}, x_{2}, a_{3}, a_{2}, a_{5}, x_{1}, x_{3}, y_{2}, a_{4}\right)$,
a contradiction.

Corollary 2.12. The graph G is not a forest.

Proof. By Corollary 2.4 and Lemma 2.11, we see that if G is a forest, then G is a path. By Lemma 2.2, we conclude that $n \geq 8$. By Lemma 2.6 and Corollary 2.7, there is an FPF bipacking of G in a B_{n+1}, a contradiction.

Corollary 2.13. The minimum degree of G is at least 2 .
Proof. On the contrary, let x be an endvertex of G. Say that $x \in X_{1}$. By Lemma 2.3, there exists $y \in X_{2}$ such that $d(y) \geq\left(n_{1}-1\right) / 2$. As G is not a forest and $g(G) \geq 12, G$ has a cycle C of order at least 12 and so $n_{1} \geq 7$ and $n_{2} \geq 6$. Thus $d(y) \geq 3$. Let $Y_{1}=N(y)$. By Corollary 2.5, $x y \notin E$ and $d(z) \geq 2$ for each $z \in Y_{1}$. Clearly, $x \notin V(C)$. If $n_{1}=7$, then $d(y, C) \geq 3$, which implies $G[V(C) \cup\{y\}]$ has a cycle of order less than 12, a contradiction. Hence $n_{1} \geq 8$ and so $d(y) \geq 4$. Let $Y_{0}=\{y\}$ and $Y_{i+1}=N\left(Y_{i}\right)-Y_{i-1}$ for $i \geq 1$. Let a_{1} be the number of endvertices of G contained in Y_{2} and a_{2} the number of endvertices of G contained in $Y_{3} \cup Y_{4}$. As x is an endvertex of G and by Lemma 2.11, $a_{1} \leq 1$ and $a_{1}+a_{2} \leq 2$. As $g(G) \geq 12$, we see that $\left|Y_{2}\right| \geq\left|Y_{1}\right|$ and $\left|Y_{3}\right| \geq\left|Y_{2}\right|-a_{1}$ and $\left|Y_{5}\right| \geq\left|Y_{3}\right|-a_{2} \geq 2$. Thus $n_{1} \geq\left|Y_{1}\right|+\left|Y_{3}\right|+\left|Y_{5}\right| \geq$ $3\left|Y_{1}\right|-2 a_{1}-a_{2} \geq 2\left\lceil\left(n_{1}-1\right) / 2\right\rceil+\left\lceil\left(n_{1}-1\right) / 2\right\rceil-2 a_{1}-a_{2}$. Since $8 \leq n_{1}, a_{1} \leq 1$ and $a_{1}+a_{2} \leq 2$, we see that $\left\lceil\left(n_{1}-1\right) / 2\right\rceil \geq 2 a_{1}+a_{2}+1$ and equality holds only if $8 \leq n_{1} \leq 9$ and $a_{1}=a_{2}=1$. Clearly, $2\left\lceil\left(n_{1}-1\right) / 2\right\rceil \geq n_{1}-1$ and equality holds only if n_{1} is odd. It follows that $2\left\lceil\left(n_{1}-1\right) / 2\right\rceil+\left\lceil\left(n_{1}-1\right) / 2\right\rceil-2 a_{1}-a_{2} \geq$ $n_{1}+\left\lceil\left(n_{1}-1\right) / 2\right\rceil-2 a_{1}-a_{2}-1 \geq n_{1}$. So equality holds through this equation. This yields that $a_{1}=a_{2}=1, n_{1}=9$ and every vertex in $Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}$ has degree 2 if it is not one of the two endvertices. As $\left|Y_{1}\right| \geq 4$, it follows that there are two vertex-disjoint paths of order 4 from Y_{1} to Y_{4} in $G\left[Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}\right]$, which are two vertex-disjoint feasible paths. This is a contradiction by Lemma 2.9 .

Lemma 2.14. The minimum degree of G is at least 3 .
Proof. On the contrary, say $\delta(G)=2$. By Lemma 2.3, for some $\{i, j\}=\{1,2\}$, there exist two distinct vertices a and b in X_{j} such that $|N(a) \cup N(b)| \geq$ $\left(n_{i}-1\right) / 2$. We may choose $\{i, j\}, a$ and b with $|N(a) \cup N(b)|$ maximal. Subject to this condition, we choose a and b such that the distance $d(a, b)$ from a to b is minimal. Say w.l.o.g. that $\{a, b\} \subseteq X_{2}$ and $|N(a) \cup N(b)| \geq\left(n_{1}-1\right) / 2$. Say w.l.o.g. $d(a) \leq d(b)$. As $\delta(G)=2$ and $g(G) \geq 12$, each component of G contains a cycle of order at least 12. By Corollary 2.7, we see that G has a component which is not a cycle. Thus $\Delta(G) \geq 3$. As $g(G) \geq 8$, we see that $|N(a) \cup N(b)| \geq 5$. Hence $d(b) \geq 3$. We break into the following two cases.

Case 1. $d(a, b) \leq 4$.
Let $c_{1} \in N(a)$ and $c_{2} \in N(b)$ such that if $d(a, b)=2$, then $c_{1}=c_{2}$ and if $d(a, b)=4$, then $N\left(c_{1}\right) \cap N\left(c_{2}\right) \neq \emptyset$. In the latter case, say $N\left(c_{1}\right) \cap N\left(c_{2}\right)=\left\{c_{0}\right\}$. Let $Y_{0}=N(b)-\left\{c_{2}\right\}, Y_{1}=N\left(Y_{0}\right)-\{b\}$ and $Y_{i+1}=N\left(Y_{i}\right)-Y_{i-1}$ for $i=1,2,3$. Since $g(G) \geq 12$ and $\delta(G) \geq 2$, we see that $N\left(\left\{a, b, c_{1}, c_{2}\right\}\right), Y_{1}, Y_{2}, Y_{3}$ and Y_{4} are mutually disjoint and $G\left[N\left(\left\{a, b, c_{1}, c_{2}\right\}\right) \cup Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}\right]$ is a tree. We
use T to denote this tree $G\left[N\left(\left\{a, b, c_{1}, c_{2}\right\}\right) \cup Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}\right]$. As $g(G) \geq 12$, we see

$$
\begin{equation*}
\left|Y_{i+1}\right|=\sum_{x \in Y_{i}}(d(x)-1) \text { for } i \in\{0,1,2,3\} \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
n_{1} \geq|N(\{a, b\})|+\left|Y_{2}\right|+\left|Y_{4}\right| \geq\left(n_{1}-1\right) / 2+\left|Y_{2}\right|+\left|Y_{4}\right| \tag{2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left(n_{1}+1\right) / 2 \geq\left|Y_{2}\right|+\left|Y_{4}\right| . \tag{3}
\end{equation*}
$$

As $d(b) \geq 3,\left|Y_{0}\right| \geq d(b)-1$ and so $\left|Y_{i}\right| \geq d(b)-1 \geq 2$ for $i \in\{1,2,3,4\}$ by (1). Moreover, there are k vertex-disjoint paths L_{1}, \ldots, L_{k-1} and L_{k} from Y_{0} to Y_{4}, where $k=\left|Y_{0}\right|$. Let $u_{i} v_{i}$ with $u_{i} \in Y_{2}$ be the second last edge on L_{i} $(1 \leq i \leq k)$. By Lemma 2.9, at most one of these k edges is a feasible edge. Say w.l.o.g. that $u_{i} v_{i}$ is not feasible for $i=1, \ldots, k-1$.

First, assume that $u_{k} v_{k}$ is feasible, then by Lemma 2.9, the first edge of L_{i} is not a feasible edge for each $i \in\{1,2, \ldots, k-1\}$. Consequently, $\left|Y_{2}\right| \geq\left|Y_{0}\right|+(k-$ 1) and $\left|Y_{4}\right| \geq\left|Y_{0}\right|+2(k-1)$ by (1). Thus $\left|Y_{2}\right|+\left|Y_{4}\right| \geq 2\left|Y_{0}\right|+3(k-1)$. If $c_{1}=c_{2}$, then $2\left|Y_{0}\right| \geq|N(a) \cup N(b)|-1 \geq\left(n_{1}-1\right) / 2-1$, and so $\left|Y_{2}\right|+\left|Y_{4}\right|>\left(n_{1}+1\right) / 2$, contradicting (3). Hence $c_{1} \neq c_{2}$. Then $2\left|Y_{0}\right| \geq d(a)+d(b)-2 \geq\left(n_{1}-1\right) / 2-2$ and so

$$
\left(n_{1}+1\right) / 2 \geq\left|Y_{2}\right|+\left|Y_{4}\right| \geq\left(n_{1}-1\right) / 2-2+3(k-1) \geq\left(n_{1}+1\right) / 2
$$

It follows that $k=2$, i.e., $\left|Y_{0}\right|=2$ and $d(b)=3,\left|Y_{2}\right|+\left|Y_{4}\right|=\left(n_{1}+1\right) / 2$, $\left|Y_{2}\right|=3,\left|Y_{4}\right|=4$ and $2\left|Y_{0}\right|=d(a)+d(b)-2$. Consequently, $d(a)=3$, $\left|Y_{2}\right|+\left|Y_{4}\right|=3+4=7$ and $n_{1}=13$. This means that $X_{1}=N(a) \cup N(b) \cup Y_{2} \cup Y_{4}$. Hence $d\left(c_{0}\right)=2$. As $u_{k} v_{k}$ is feasible, $c_{0} c_{2}$ is not feasible by Lemma 2.9. As $X_{1}-V(T)=\emptyset$, this implies that there exists $z \in X_{2}-\left\{c_{0}, b\right\}$ such that $z c_{2} \in E$. As $\delta(G)=2$ and $g(G) \geq 12$, this implies that $v z \in E$ for some $v \in X_{1}-V(T)=\emptyset$, a contradiction.

Therefore $u_{k} v_{k}$ is not feasible and so $\left|Y_{4}\right| \geq\left|Y_{2}\right|+k \geq\left|Y_{0}\right|+k$. Thus $\left|Y_{2}\right|+\left|Y_{4}\right| \geq 2\left|Y_{0}\right|+k$. Since $2\left|Y_{0}\right| \geq|N(a) \cup N(b)|-2 \geq\left(n_{1}-1\right) / 2-2$ and by (3), it follows that $k \leq 3$ and so $\left|Y_{4}\right| \leq\left|Y_{0}\right|+3$. As $k \geq 2$, it follows that for some $i \in\{1, \ldots, k\}$, the first edge of L_{i} is feasible for otherwise $\left|Y_{4}\right| \geq\left|Y_{0}\right|+4$ by (1). If $d(a)=d(b)$, then by symmetry, there exists a feasible edge $u v$ with $u \in N(a)-N(a) \cap N(b)$ and $v \neq a$. As $g(G) \geq 12$, we see that G has two vertex-disjoint feasible paths, a contradiction. Hence $d(a)<d(b)$. Then $2\left|Y_{0}\right| \geq|N(a) \cup N(b)| \geq\left(n_{1}-1\right) / 2$ if $c_{1}=c_{2}$ and $2\left|Y_{0}\right| \geq|N(a) \cup N(b)|-1 \geq$ $\left(n_{1}-1\right) / 2-1$ if $c_{1} \neq c_{2}$. By (3), it follows that $c_{1} \neq c_{2}, d(a)=\left|Y_{0}\right|=k=2$, $\left|Y_{4}\right|=\left|Y_{0}\right|+2$ and $X_{1}=N(a) \cup N(b) \cup Y_{2} \cup Y_{4}$. Thus the first edge of each L_{i} is feasible. By Lemma 2.9, $c_{1} c_{0}$ is not feasible. Since $X_{1}-V(T)=\emptyset$ and $g(G) \geq 12$, this implies that there exists $z \in X_{2}-\left\{a, c_{0}\right\}$ such that $z c_{1} \in E$. As
$\delta(G) \geq 2$ and $g(G) \geq 12$, it follows that $v z \in E$ for some $v \in X_{1}-V(T)=\emptyset$, a contradiction.
Case 2. $d(a, b) \geq 6$.
Let $Y_{0}=N(a), Y_{1}=N\left(Y_{0}\right)-\{a\}, Y_{2}=N\left(Y_{1}\right)-Y_{0}, Z_{0}=N(b), Z_{1}=$ $N\left(Z_{0}\right)-\{b\}, Z_{2}=N\left(Z_{1}\right)-Z_{0}$ and $J=Y_{2} \cap Z_{2}$. As $d(a, b) \geq 6, Y_{1} \cap Z_{1}=\emptyset$. Let $T_{1}=G\left[\{a\} \cup Y_{0} \cup Y_{1} \cup Y_{2}\right], T_{2}=G\left[\{b\} \cup Z_{0} \cup Z_{1} \cup Z_{2}\right]$. Since $\delta(G) \geq 2$ and $g(G) \geq 12, V\left(T_{1}\right) \cap V\left(T_{2}\right)=J$, each of T_{1} and T_{2} is a tree and each of $E\left(J, Y_{1}\right)$ and $E\left(J, Z_{1}\right)$ consists of $|J|$ independent edges. Furthermore, for each $i \in\{0,1\}, E\left(Y_{i}, Y_{i+1}\right)$ contains $\left|Y_{i}\right|$ independent edges, $E\left(Z_{i}, Z_{i+1}\right)$ contains $\left|Z_{i}\right|$ independent edges and there are $|J|$ vertex-disjoint paths of order 5 from Y_{0} to Z_{0} passing through J.

Let E_{0} be an edge independent set with $E_{0} \subseteq E\left(Y_{0}, Y_{1}\right)$ and $\left|E_{0}\right|=\left|Y_{0}\right|$. Let F_{0} be an edge independent set with $F_{0} \subseteq E\left(Z_{0}, Z_{1}\right)$ and $\left|F_{0}\right|=\left|Z_{0}\right|$. For each edge $x y \in E_{0} \cup F_{0} \cup E\left(J, Y_{1}\right) \cup E\left(J, Z_{1}\right)$ with $y \in Y_{1} \cup Z_{1}$, we define $\xi(x y)$ to be the subset of $X_{1}-Y_{0} \cup Z_{0}$ such that $u \in \xi(x y)$ if and only if $u \in X_{1}-Y_{0} \cup Z_{0}$ and either $u y \in E$ with $u \neq x$ or $u v x$ is a path of G for some $v \in X_{2}-\{a, b\}$. Since $\delta(G) \geq 2$ and $g(G) \geq 8$, we see that $\xi(e) \neq \emptyset$ for all $e \in E_{0} \cup F_{0}$. Moreover, we see

$$
\begin{align*}
Y_{2} & =\cup_{e \in E_{0}} \xi(e) \text { and } Z_{2}=\cup_{e \in F_{0}} \xi(e) \tag{4}\\
\left|Y_{2}\right| & =\sum_{e \in E_{0}}|\xi(e)| \text { and }\left|Z_{2}\right|=\sum_{e \in F_{0}}|\xi(e)| . \tag{5}
\end{align*}
$$

It follows from (4) and (5) that $\left|Y_{2}\right| \geq\left|Y_{0}\right|$ and $\left|Z_{2}\right| \geq\left|Z_{0}\right|$. First, we assume that $Y_{2} \cap Z_{2}=\emptyset$. Then $n_{1} \geq\left|Y_{0}\right|+\left|Z_{0}\right|+\left|Y_{2}\right|+\left|Z_{2}\right| \geq 2\left(\left|Y_{0}\right|+\left|Z_{0}\right|\right)=$ $2|N(\{a, b\})| \geq n_{1}-1$. By (4) and (5), we see that with at most one exception, $|\xi(e)|=1$, i.e., e is a feasible edge, for all $e \in E_{0} \cup F_{0}$. Thus $E\left(Y_{0}, Y_{1}\right)$ contains a feasible edge e and $E\left(Z_{0}, Z_{1}\right)$ contains a feasible edge f and so G has two vertex-disjoint feasible paths, contradicting Lemma 2.9.

Therefore $J \neq \emptyset$. Let $J_{0}=\{x \in J \mid d(x) \geq 3\}, J_{1}=N\left(J_{0}\right)-Y_{1} \cup Z_{1}$ and $J_{2}=N\left(J_{1}\right)-J_{0}$. Since $g(G) \geq 12$, each of $G\left[V\left(T_{1}\right) \cup\left(\cup_{i=1}^{2} J_{i}\right)\right]$ and $G\left[V\left(T_{2}\right) \cup\left(\cup_{i=1}^{2} J_{i}\right)\right]$ is a tree. Furthermore, we have

$$
\begin{equation*}
\left|J_{1}\right|=\sum_{x \in J_{0}}(d(x)-2) \text { and }\left|J_{2}\right|=\sum_{x \in J_{1}}(d(x)-1) . \tag{6}
\end{equation*}
$$

As $\delta(G) \geq 2$, this implies that $\left|J_{2}\right| \geq\left|J_{1}\right| \geq\left|J_{0}\right|$. If $J_{0}=J$, then $n_{1} \geq$ $\left|Y_{0}\right|+\left|Z_{0}\right|+\left|Y_{2}\right|+\left|Z_{2}\right|-|J|+\left|J_{2}\right| \geq 2\left(\left|Y_{0}\right|+\left|Z_{0}\right|\right) \geq n_{1}-1$. Thus $|\xi(e)| \neq 1$ for at most one edge $e \in E_{0} \cup F_{0}$. That is, with at most one exception, every edge $e \in E_{0} \cup F_{0}$ is a feasible edge of G and consequently, G contains two vertex-disjoint feasible paths, contradicting Lemma 2.9. Therefore $J_{0} \neq J$.

Let y be an arbitrary vertex in $Y_{1} \cup Z_{1}$ with $N(y) \cap\left(J-J_{0}\right) \neq \emptyset$. We claim $d(y) \geq 3$. If this is not true, then $d(y)=2$. Let $u_{1} u_{2} u_{3} u_{4} u_{5}$ be a path where $u_{1} \in Y_{0}, u_{2} \in Y_{1}, u_{3} \in J-J_{0}, u_{4} \in Z_{1}$ and $u_{5} \in Z_{0}$ with $y \in\left\{u_{2}, u_{4}\right\}$. Say w.l.o.g. that $y=u_{2}$. Then $u_{1} u_{2} u_{3} u_{4}$ is feasible. By Lemma 2.9, each edge
$\left.e \in E\left(Y_{0}-\left\{u_{1}\right\}, Y_{1}\right) \cup E\left(Z_{0}-\left\{u_{5}\right\}\right), Z_{1}\right)$ is not feasible, i.e., $|\xi(e)| \geq 2$. By (4) and (5), we obtain that $\left|Y_{2}\right| \geq 2\left|Y_{0}\right|-1$ and $\left|Z_{2}\right| \geq 2\left|Z_{0}\right|-1$. With $\left|Y_{0}\right| \geq|J|$ and $\left|Z_{0}\right|=d(b) \geq 3$, it follows that

$$
\begin{aligned}
n_{1} & \geq\left|Y_{0}\right|+\left|Z_{0}\right|+\left|Y_{2}\right|+\left|Z_{2}\right|-|J|+\left|J_{2}\right| \\
& \geq 2\left(\left|Y_{0}\right|+\left|Z_{0}\right|\right)+\left|Y_{0}\right|+\left|Z_{0}\right|-|J|-2+\left|J_{2}\right| \\
& \geq\left(n_{1}-1\right)+\left|Y_{0}\right|-|J|+\left|Z_{0}\right|-2+\left|J_{2}\right| \geq n_{1} .
\end{aligned}
$$

This yields that $\left|Y_{0}\right|=|J|, d(b)=\left|Z_{0}\right|=3, J_{2}=\emptyset$ (i.e., $J_{0}=\emptyset$), $\left|Y_{2}\right|=2\left|Y_{0}\right|-1$ and $\left|Z_{2}\right|=2\left|Z_{0}\right|-1$. Thus $d\left(u_{i}\right)=2$ for all $i \in\{1,2,3,4,5\}$. Let $u_{6} \in Z_{1}-\left\{u_{4}\right\}$ with $u_{5} u_{6} \in E$. Then $u_{3} u_{4} u_{5} u_{6}$ is a feasible path. Let $u_{0} \in Y_{0}-\left\{u_{2}\right\}$ with $u_{0} a \in E$. Then $u_{0} a u_{1} u_{2}$ is not a feasible path by Lemma 2.9. Thus $d(a) \neq 2$ and so $d(a)=3=d(b)$. Let $v_{1} \in J-\left\{u_{3}\right\}$ and $v_{2} \in Z_{1}-\left\{u_{4}\right\}$ with $v_{1} v_{2} \in E$. By Lemma 2.9, we see that $v_{1} v_{2}$ is not a feasible edge. As $d\left(v_{1}\right)=2$, this implies $d\left(v_{2}\right) \geq 3$. Clearly, $|N(a) \cup N(b)| \leq\left|N(a) \cup N\left(v_{2}\right)\right|$, but $d\left(a, v_{2}\right)=$ $4<d(a, b)$, contradicting the minimality of $d(a, b)$. Therefore the claim is true, i.e., $d(y) \geq 3$ for all $y \in Y_{1} \cup Z_{1}$ with $N(y) \cap\left(J-J_{0}\right) \neq \emptyset$. By (4) and (5), this yields that $\left|Y_{2}\right| \geq\left|Y_{0}\right|+\left|J-J_{0}\right|$ and $\left|Z_{2}\right| \geq\left|Z_{0}\right|+\left|J-J_{0}\right|$. Moreover, as $\delta(G) \geq 2$ and $g(G) \geq 12$, there exists a path $x_{1} x_{2} x_{3} x_{4} x_{5}$ of order 5 with $x_{1} \in J-J_{0}, x_{2} \in Y_{1}, x_{3} \in Y_{2}, x_{3} \notin Y_{0} \cup J, x_{4} \in X_{2}-Y_{1} \cup Z_{1} \cup J_{1}$ and $x_{5} \in X_{1}$. As $g(G) \geq 12$, we see that $x_{5} \notin Y_{0} \cup Z_{0} \cup Y_{2} \cup Z_{2} \cup J_{2}$. Thus

$$
\begin{align*}
n_{1} & \geq\left|Y_{0}\right|+\left|Z_{0}\right|+\left|Y_{2} \cup Z_{2}\right|+\left|J_{2}\right|+1 \tag{7}\\
& \geq 2\left(\left|Y_{0}\right|+\left|Z_{0}\right|\right)-|J|+2\left|J-J_{0}\right|+\left|J_{2}\right|+1 \tag{8}\\
& \geq n_{1}-1+\left|J-J_{0}\right|+1 \geq n_{1}+1, \tag{9}
\end{align*}
$$

a contradiction.
We are now ready to complete the proof of the theorem. Choose $x \in X_{1}$ such that $d(x)=\Delta_{1}$. Let $A_{0}=\{x\}$ and $A_{1}=N(x)$. For each $i \in\{2,3,4,5\}$, let $A_{i}=N\left(A_{i-1}\right)-A_{i-2}$. Since $g(G) \geq 12, A_{i} \cap A_{j}=\emptyset$ for all $0 \leq i<j \leq 5$ and $\left|A_{i}\right|=\sum_{y \in A_{i-1}}(d(y)-1)$ for each $i \in\{2,3,4,5\}$. Thus if $A_{i} \subseteq X_{1}$, then $\left|A_{i}\right| \geq\left|A_{i-1}\right|\left(\delta_{2}-1\right)$ and if $A_{i} \subseteq X_{2}$, then $\left|A_{i}\right| \geq\left|A_{i-1}\right|\left(\delta_{1}-1\right)$ for each $i \in\{2,3,4,5\}$. As $A_{5} \subseteq X_{2}$, we obtain $n_{2} \geq\left|A_{5}\right| \geq\left|A_{1}\right|\left(\delta_{2}-1\right)^{2}\left(\delta_{1}-1\right)^{2}=$ $\Delta_{1}\left(\delta_{2}-1\right)^{2}\left(\delta_{1}-1\right)^{2}$. Since $\delta \geq 3,\left(\delta_{2}-1\right)^{2} \geq \delta_{2}+1$ and $\left(\delta_{1}-1\right)^{2} \geq 4$. Consequently, $n_{2} \geq 4\left(\delta_{2}+1\right) \Delta_{1}>1+2 \delta_{2} \Delta_{1}$, contradicting Corollary 2.4. This proves the theorem.

References

[1] B. Bollobás, Extremal Graph Theory, London Mathematical Society Monographs, 11, Academic Press, Inc., London, 1978.
[2] S. Brandt, Embedding graphs without short cycles in their complements, in Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), 115-121, Wiley-Intersci. Publ, Wiley, New York, 1995.
[3] R. J. Faudree, C. C. Rousseau, R. H. Schelp, and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31(106) (1981), no. 1, 53-62.
[4] J.-L. Fouquet and A. P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993), no. 1-3, 85-92.
[5] A. Görlich, M. Poliśniak, M. Woźniak, and A. Ziolo, A note on embedding graphs without short cycles, Discrete Math. 286 (2004), no. 1-2, 75-77.
[6] B. Orchel, 2-placement of (p, q)-trees, Discuss. Math. Graph Theory 23 (2003), no. 1, 23-36.
[7] N. Sauer and H. Wang, The chromatic number of the two packings of a forest, Math. Yellow Series of University of Calgary (1992), No. 732.
[8] H. Wang, Packing two forests into a bipartite graph, J. Graph Theory 23 (1996), no. 2, 209-213.
[9] , Packing two bipartite graphs into a complete bipartite graph, J. Graph Theory 26 (1997), no. 2, 95-104.

Hong Wang
Department of Mathematics
The University of Idaho
Moscow, Idaho, 83844, USA
Email address: hwang@uidaho.edu

