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WEAKLY ALMOST PERIODIC POINTS AND CHAOTIC

DYNAMICS OF DISCRETE AMENABLE GROUP ACTIONS

Bin Ling, Xiaoxiao Nie, and Jiandong Yin

Abstract. The aim of this paper is to introduce the notions of (quasi)
weakly almost periodic point, measure center and minimal center of at-

traction of amenable group actions, explore the connections of levels of

the orbit’s topological structure of (quasi) weakly almost periodic points
and study chaotic dynamics of transitive systems with full measure cen-

ters. Actually, we showed that weakly almost periodic points and quasi-

weakly almost periodic points have distinct orbit’s topological structure
and proved that there exists at least countable Li-Yorke pairs if the sys-

tem contains a proper (quasi) weakly almost periodic point and that a
transitive but not minimal system with a full measure center is strongly

ergodically chaotic.

1. Introduction and preliminaries

For a discrete dynamical system, the most important dynamics are concen-
trating on a full measure subset from the view of ergodic theory. In order to
describe such a full measure set, Zhou [12] introduced the notions of weakly al-
most periodic point and measure center, and proved that the closure of the set
of weakly almost periodic points is actually the measure center. Zhou and He
[13] raised the concept of quasi-weakly almost periodic point and showed that
weakly almost periodic points and quasi-weakly almost periodic points have
completely distinct ergodic properties. Concretely, the support of each invari-
ant measure generated by the orbit of a given weakly almost periodic point is
its minimal center of attraction, and a point is quasi-weakly almost periodic if
and only if it belongs to its minimal center of attraction. In 2012, Huang and
Zhou [7] introduced the conceptions of weakly almost periodic point, quasi-
weakly almost periodic point and measure center for continuous semi-flows
and obtained some similar results of [12, 13]. One can see [3–6, 8, 9] for the
recent results about group actions. In this paper, we considered the version of
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group actions of [7, 12, 13]. Indeed, we introduced the conceptions of weakly
almost periodic point, quasi-weakly almost periodic point and measure cen-
ter of amenable group actions, showed that weakly almost periodic points and
quasi-weakly almost periodic points have distinct orbit’s topological structure
and proved that there exists at least countable Li-Yorke pairs if the system
contains a proper (quasi) weakly almost periodic point and that a transitive
but not minimal amenable group action with a full measure center is strongly
ergodically chaotic.

1.1. Sets in discrete amenable groups

Throughout let (G, ·) be a discrete infinite countable amenable topological
group and (G,X) be a topologically dynamical system or G-system for short,
on a compact metric space (X, d). A sequence {Fi}∞i=1 of finite subsets of G is
called a Følner sequence if

lim
i→∞

|gFi∆Fi|
|Fi|

= 0,∀g ∈ G,

where | · | is the counting measure on G. Since (G, ·) is assumed to be amenable,
it always has a Følner sequence (cf., e.g. [1]). Denote by FG the collection of
all Følner sequences of G.

Fix a Følner sequence F = {Fn}∞n=1 of G, we define the density of a set
S ⊂ G with respect to F by

dF (S) = lim
i→∞

|S ∩ Fi|
|Fi|

if the above limit exists. Otherwise we can define respectively the upper density
and lower density of S with respect to F by

dF (S) = lim sup
i→∞

|S ∩ Fi|
|Fi|

and dF (S) = lim inf
i→∞

|S ∩ Fi|
|Fi|

.

S ⊂ G is called a syndetic set if there is a compact subset K of G such that
G = KS, i.e., G =

⋃
s∈S Ks. One can see [1] for more details of amenable

groups.

1.2. Related concepts of dynamical systems

Let (X,G) be a G-system. The orbit of a point x ∈ X is denoted by
G(x) = {gx : g ∈ G} and C`(A) denotes the closure of A ⊂ X in X. Given
x ∈ X, denote by ω(x,G) the ω-limit set of x under G, that is ω(x,G) = {y ∈
X : there exists a sequence {gi}∞i=1 ⊂ G such that gix → y}. x ∈ X is an
almost periodic point if for each ε > 0, the recurrent time set of x entering
its ε-neighborhood B(x, ε), denoted by N(x,B(x, ε)), is a syndetic set of G;
a recurrent point if for each ε > 0 there is a non-identity element g ∈ G
such that gx ∈ B(x, ε); a non-wandering point if for any neighborhood U of
x there exists a non-identity element g ∈ G such that gU ∩ U 6= ∅. Denoted
by A(G), R(G) and Ω(G) the sets of all almost periodic points, all recurrent
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points and all non-wandering points of a given G-system (X,G). Obviously,
A(G) ⊂ R(G) ⊂ Ω(G).

The meeting time set of nonempty open subsets U and V of X is defined by

N(U, V ) = {g ∈ G : gU ∩ V 6= ∅}.
K ⊂ X is said to be invariant if GK = K. (X,G) is said to be transitive if
N(U, V ) 6= ∅ for any pair of nonempty open subsets U and V of X. x ∈ X is
called a transitive point if the orbit of x is dense in X. We say that (X,G) is
point-transitive if there is a transitive point in X. (X,G) is said to be

(1) topological ergodic if for any pair of nonempty open subsets U and V
of X, there exists a Følner sequence F = {Fi}∞i=1of G such that N(U, V ) has
positive upper density with respect to F ;

(2) strongly ergodic if N(U, V ) is a syndetic set for any pair of nonempty
open subsets U and V of X;

(3) weakly mixing if (X ×X,G), the self-product system of (X,G), is tran-
sitive;

(4) strongly mixing if N(U, V ) is cofinite, that is the cardinality of G −
N(U, V ) is finite for any pair of nonempty open subsets U and V of X, where
A−B stands for the difference set of A and B. Similarly hereinafter.
x ∈ X is said to be an equi-continuous point if for each ε > 0 there is δ > 0

such that for any y ∈ X with d(x, y) < δ, we have d(gx, gy) < ε for each g ∈ G.
(X,G) is said to be equi-continuous if for each ε > 0 there is δ > 0 such that
d(gx, gy) < ε for every g ∈ G whenever x, y ∈ X with d(x, y) < δ.

Let V ⊂ X and δ > 0. We write

SG(V, δ) = {g ∈ G : ∃ x, y ∈ V such that d(gx, gy) > δ}.
(X,G) is sensitive if there exists δ > 0 such that SG(V, δ) 6= ∅ for each

nonempty open subset V of X; ergodically sensitive if there exists δ > 0 such
that for each nonempty open subset V of X, SG(V, δ) has positive upper density
with respect to some Følner sequence of G; syndetic sensitive if there exists
δ > 0 such that SG(V, δ) is syndetic for each nonempty open subset V of X.

1.3. Preparations of ergodic theory

Let (X,G) be a G-system. Denote by B(X) the Borel σ-algebra of X and
respectively by M(X), M(X,G) and E(X,G) the collections of all probability
measures, all G-invariant measures and all G-ergodic measures of (X,G). Then

∅ 6= E(X,G) ⊆M(X,G) ⊆M(X)

and M(X) is a compact metrizable convex space with weak∗-topology. Given
x ∈ X, then x determines an element δx inM(X) as follows: for eachA ∈ B(X),

δx(A) =

{
1, if x ∈ A,
0, otherwise.

A point x ∈ X is said to be a support point of an invariant measure µ
if µ(U) > 0 for each neighborhood U of x. The set of all support points
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of µ is called the support of µ, denoted by Sµ. For each Følner sequence
F = {Fi}∞i=1 of G, it is easy to see that 1

|Fi|
∑
g∈Fi

δgx ∈ M(X) and the set

of all limit points of { 1
|Fi|

∑
g∈Fi

δgx}∞i=1, denoted by MF,x, is contained in

M(X,G). For convenience, we write Mx =
⋃
F∈FG

MF,x for any given x ∈ X
and MX0

=
⋃
x∈X0

Mx for each nonempty set X0 ⊂ X.

2. Weakly almost periodic points and minimal centers of attraction
of amenable group actions

In the sequel, we always assume that (X,G) is a G-system. Firstly, we
introduce the notions of weakly almost periodic points and quasi-weakly almost
periodic points of amenable group actions.

Definition 2.1. x ∈ X is said to be a weakly almost periodic point of (X,G)
if for each ε > 0 and every Følner sequence F = {Fi}∞i=1 of G,

dF (N(x,B(x, ε))) = lim inf
i→∞

|{g ∈ Fi : gx ∈ B(x, ε)}|
|Fi|

> 0.

Denote by W (G) the set of all weakly almost periodic points of (X,G).

Definition 2.2. x ∈ X is said to be a quasi-weakly almost periodic point of
(X,G) if for each ε > 0, there exists a Følner sequence F = {Fi}∞i=1 of G such
that

dF (N(x,B(x, ε))) = lim sup
i→∞

|{g ∈ Fi : gx ∈ B(x, ε)}|
|Fi|

> 0.

Denote by QW (G) the set of all quasi-weakly almost periodic points of (X,G).

Clearly W (G) ⊂ QW (G). Moreover, W (G) and QW (G) are invariant if G
is abelian, i.e., for all a, b ∈ G, ab = ba.

Proposition 2.1. W (G) and QW (G) are invariant under G if G is abelian.

Proof. Suppose x ∈ W (G). It suffices to prove tx ∈ W (G) for each t ∈ G.
Given t ∈ G with t 6= e and let y = tx. For any ε > 0, write Tε = {g ∈ G : gy ∈
B(y, ε)}. As t is continuous, there exists δ > 0 such that tB(x, δ) ⊂ B(y, ε).
Denote Sδ = {g ∈ G : gx ∈ B(x, δ)}, then Sδt ⊂ Tε. Next we prove that
Tε has positive lower density with respect to any Følner sequence {Fi}∞i=1 of
G. In fact, since {Fi}∞i=1 is a Følner sequence of G, so does {Fit−1}∞i=1. Note
|gFi∆Fi| = |(gFi∆Fi)t−1| = |gFit−1∆Fit

−1|, |Fit−1| = |Fi| and x ∈W (G), we
have

|Tε ∩ Fi|
|Fi|

≥ |Sδt ∩ Fi|
|Fi|

=
|Sδ ∩ Fit−1|
|Fit−1|

> 0.

Thus tx ∈W (G).
Similarly, we can prove tx ∈ QW (G) for any x ∈ QW (G) and t ∈ G. �

In the following, we introduce the concept of minimal center of attraction of
amenable group actions.
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Definition 2.3. Suppose X0 ⊂ X is nonempty. A subset E of X is said to be
a center of attraction of X0 if E is closed and invariant and

dF (N(x,B(E, ε))) = lim
n→∞

|{g ∈ Fn : gx ∈ B(E, ε)}|
|Fn|

= 1

for any ε > 0, x ∈ X0 and each Følner sequence F = {Fn}∞n=1 of G. Here
B(E, ε) denotes the ε-neighborhood of E, i.e., B(E, ε) = {x ∈ X : d(x,E) < ε}.
E is called the minimal center of attraction of X0, denoted by CX0

, if E is
a center of attraction of X0 and there is no proper subsets of E satisfying the
above conditions. When X0 is a singleton, say X0 = {x}, we say that C{x} is
the minimal center of attraction of x, denoted simply by Cx.

Similar to [12], we introduce the conception of measure center of amenable
group actions as follows.

Definition 2.4. A subset F of X is called the measure center of (X,G) with
respect to X0 if F is closed, invariant and m(F ) = 1 for all m ∈MX0

and there
is no proper subsets of F satisfying these properties. The measure center of
(X,G) with respect to X0 is denoted by MC(X0). When X0 = X, we denote
it by MC(G).

Next we need to present some properties of weakly almost periodic points
and measure centers. Before doing that, we give two lemmas as follows.

Lemma 2.1 ([10]). Suppose mi,m ∈ M(X), i = 1, 2, . . . and mi → m under
weak∗-topology. Then m(E) ≤ lim inf

i→∞
mi(E) for each open subset E of X and

lim sup
i→∞

mi(F ) ≤ m(F ) for every closed subset F of X.

Lemma 2.2. Let X0 ⊂ X. Then MC(X0) = C`(
⋃
m∈MX0

Sm). In particular.

MC(G) = C`(
⋃
m∈MX

Sm).

Proof. Obviously, MC(X0) ⊂ C`(
⋃
m∈MX0

Sm). Since for all m ∈MX0
,

m(C`(
⋃

m∈MX0

Sm)) = 1,

if there is x ∈ C`(
⋃
m∈MX0

Sm) such that x 6∈ MC(X0), then there exists

ε > 0 such that B(x, ε) ∩MC(X0) = ∅. By the definition of the support of
an invariant measure, there exists µ ∈ MX0

such that µ(B(x, ε)) > 0 which
implies µ(MC(X0)) < 1. This is a contradiction. �

Lemma 2.3. dF (N(x, U)) + dF (N(x,X −U)) ≤ 1 for any x ∈ X, U ⊂ B(X)
and F ∈ FG.

Proof. Since the proof is easy, we leave it to the reader. �

Proposition 2.2. MC(X0) = CX0 for each nonempty subset X0 of X. In
particular, CX = MC(G) and Cx = C`(

⋃
m∈Mx

Sm) for all x ∈ X.
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Proof. By Lemma 2.2, MC(X0) = C`(
⋃
m∈MX0

Sm). We prove firstly that

MC(X0) is a center of attraction of X0. If not, then there exist ε0 > 0 and
x ∈ X0 such that

dF (N(x,B(MC(X0), ε0))) < 1

with respect to some Følner sequence F = {Fi}∞i=1 of G (otherwise, we can
take a subsequence of F). Write S = {g ∈ G : gx ∈ B(MC(X0), ε0)}. Choose
µ ∈MF,x, then there exists a subsequence F0 := {Fni

}∞i=1 of F such that

µni =
1

|Fni |
∑
g∈Fni

δgx −→ µ ∈MF,x ⊂MX0 .

Then from Lemma 2.1,

µ(X −B(MC(X0), ε0)) ≥ lim sup
i→∞

1

|Fni
|
∑
g∈Fni

δgx(X −B(MC(X0), ε0))

= lim sup
i→∞

|(G− S) ∩ Fni
|

|Fni
|

.

Clearly, F0 = {Fni}∞i=1 is also a Følner sequence of G and

dF0
(N(x,B(MC(X0), ε0))) < 1.

So

µ(X −B(MC(X0), ε0)) ≥ lim sup
i→∞

|(G− S) ∩ Fni
|

|Fni |
= 1− lim inf

i→∞

|S ∩ Fni
|

|Fni |
> 0.

It is in contradiction with µ(MC(X0)) = 1. So CX0
⊂MC(X0).

Next we prove that MC(X0) = CX0 . Otherwise, CX0 ( MC(X0), take
y ∈ MC(X0) − CX0 , then there are ε > 0 and δ > 0 such that B(y, δ) ∩
B(CX0

, ε) = ∅, that is B(y, δ) ⊂ X − B(CX0
, ε). Clearly there is m ∈ MX0

such that Sm ∩ B(y, δ) 6= ∅, so m(B(y, δ)) > 0. Without loss of generality,
assume that 1

|Fi|
∑
g∈Fi

δgx → m for some Følner sequence {Fi}∞i=1 of G and

x ∈ X0, then by Lemma 2.1 and Lemma 2.3,

m(B(CX0
, ε)) ≤ lim inf

i→∞

1

|Fi|
∑
g∈Fi

δgx(B(CX0
, ε))

≤ 1− lim inf
i→∞

1

|Fi|
∑
g∈Fi

δgx(X −B(CX0
, ε))

≤ 1− lim inf
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(y, δ))

≤ 1−m(B(y, δ)) < 1,

which is in contradiction with CX0
being the minimal center of attraction of

X0. Thus CX0
= MC(X0). �
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We show in the following several propositions the relationships between the
omega-limit set of a given weakly almost periodic point and the support of each
invariant measure generalized by such a point.

Proposition 2.3. Given x ∈ X. Then x ∈ W (G) ⇔ ω(x,G) = Sm for each
Følner sequence F of G and all m ∈MF,x.

Proof. Suppose that x ∈ W (G), F = {Fk}∞k=1 is a Følner sequence of G and
m ∈MF,x. Then there exists a sequence {mi}∞i=1 of { 1

|Fk|
∑
g∈Fk

δgx}∞k=1 such

that mi → m under weak∗-topology. Without loss of generality, we assume
that mi = 1

|Fi|
∑
g∈Fi

δgx for every i ≥ 1. For each ε > 0, take 0 < δ < ε. By

Lemma 2.1, we have

m(B(x, ε)) ≥ m(C`(B(x, δ))) ≥ lim sup
i→∞

mi(C`(B(x, δ)))

≥ lim sup
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, δ)) > 0.

Given g ∈ G. For each neighborhood U of gx, g−1U is a neighborhood of x
and m(U) = m(g−1U) > 0. Since G(x) is dense in ω(x,G), for any y ∈ ω(x,G)
and any neighborhood U of y, U ∩ G(x) 6= ∅. So there is g1 ∈ G such that
g1x ∈ U which means that U is also a neighborhood of g1x. It follows from the
previous conclusion that m(U) > 0. Thus every point of ω(x,G) is a support
point of m.

Conversely, if x 6∈ W (G), from the definition of weakly almost points,
there exist a Følner sequence F0 = {Fi}∞i=1 of G and ε0 > 0 such that
dF0

(N(x,B(x, ε0))) = 0, that is

lim inf
i→∞

|{g ∈ G : gx ∈ B(x, ε0)} ∩ Fi|
|Fi|

= 0.

Without loss of generality, assume that mi = 1
|Fi|

∑
g∈Fi

δgx converges to some

invariant measure µ under weak∗-topology. By Lemma 2.1

µ(B(x, ε0)) ≤ lim inf
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, ε0)) = 0,

which implies that x is not a support point of µ, so ω(x,G) 6= Sµ. �

Proposition 2.4. x ∈ Cx ⇒ ω(x,G) = C`(
⋃
m∈Mx

Sm).

Proof. Suppose x ∈ Cx. Note that Cx is invariant and closed, so C`(G(x)) ⊂
Cx. By the definition of minimal centers of attraction, we have, by Proposition
2.2, Cx = ω(x,G) = C`(

⋃
m∈Mx

Sm). �

Proposition 2.5. Given x ∈ X. Then x ∈ W (G) ⇔ x ∈ Cx = Sm for every
Følner sequence F of G and m ∈MF,x.
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Proof. From Proposition 2.3, x ∈ W (G) ⇔ ω(x,G) = Sµ for each Følner
sequence F of G and µ ∈ MF,x. Since Sm = C`(

⋃
µ∈Mx

Sµ) = Cx for any

m ∈Mx, x ∈W (G)⇔ x ∈ Sm = Cx,∀m ∈Mx. �

Proposition 2.6. x ∈ QW (G)⇒ x ∈ Cx.

Proof. If x ∈ QW (G), then for each ε > 0 there is a Følner sequence F =
{Fi}∞i=1 of G such that

dF (N(x,B(x,
ε

2
))) = lim sup

i→∞

|{g ∈ Fi : gx ∈ B(x, ε2 )}|
|Fi|

> 0.

Without loss of generality, we assume that µi = 1
|Fi|

∑
g∈Fi

δgx → µ ∈ MF,x
(otherwise, we take a subsequence of F). Noting x ∈ QW (G), we have by
Lemma 2.1,

µ(B(x, ε)) ≥ µ(C`(B(x,
ε

2
))) ≥ lim sup

i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x,
ε

2
)) > 0.

From Proposition 2.2, x ∈ Cx. �

Proposition 2.7. Let x ∈ R(G). Then Cx = ω(x,G)⇒ x ∈ QW (G).

Proof. Since x ∈ R(G), x ∈ ω(x,G) = Cx. If x /∈ QW (G), by the def-
inition of quasi-weakly almost periodic points, there exists ε0 > 0 such that
N(x,B(x, ε0)) has upper density zero with respect to each Følner sequence ofG.
So for any m ∈Mx there exists a Følner sequence F = {Fi}∞i=1 of G such that
m ∈MF,x. Without loss of generality, we suppose limi→∞

1
|Fi|

∑
g∈Fi

δgx = m.

Then by the previous conclusion and Lemma 2.1, we have

m(B(x, ε0)) ≤ lim inf
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, ε0))

≤ lim sup
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, ε0))

= dF (N(x,B(x, ε0))) = 0

which is a contradiction with Proposition 2.2. The proof is ended. �

From the above propositions, it is not hard to see

(2.1) x ∈ QW (G)⇔ x ∈ Cx ⇔ ω(x,G) = C`(
⋃

m∈Mx

Sm).

3. Weakly almost periodic points and measure centers of amenable
group actions

Let (X,G) be a G-system. A given x ∈ X is a support point of (X,G) if
for each ε > 0 there exists m ∈M(X,G) such that m(B(x, ε)) > 0. Denote by
S(G) the set of all support points of (X,G).
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About the relationships between (quasi) weakly-almost periodic points and
support points of a G-system, we have the following Proposition 3.1.

Proposition 3.1. W (G) ⊂ QW (G) ⊂ S(G).

Proof. Since the proof is similar to that of Proposition 2.6, we omit it. �

Proposition 3.2. If X has a countable basis {Ui}∞i=1 satisfying that for any i ≥
1, there exist xi ∈ X and a Følner sequence F of G such that dF (N(xi, Ui)) >
0, then there exists an invariant measure m with Sm = X.

Proof. By assumptions, for each i ≥ 1 there exist Ui and xi ∈ X and a Følner
sequence Fi = {F ij}∞j=1 of G such that dFi

(N(xi, Ui)) > 0. Choose µi ∈MFi,xi

and put m =
∑∞
i=1

1
2iµi. Next we will prove Sm = X. For any nonempty open

subset U of X, there is a nonempty open set V such that C`(V ) ⊂ U . Since
{Ui}∞i=1 is a basis of X, there exists p > 0 such that Up ⊂ V . Then we have

µp(U) ≥ µp(C`(V )) ≥ lim sup
j→∞

1

|F pj |
∑
g∈Fp

j

δgxp
(C`(V ))

≥ lim sup
j→∞

1

|F pj |
∑
g∈Fp

j

δgxp
(V )

≥ lim sup
j→∞

1

|F pj |
∑
g∈Fp

j

δgxp
(Up)

= lim sup
j→∞

|{g ∈ F pj : gxp ∈ Up}|
|F pj |

> 0.

Thus m(U) > 1
2pµp(U) > 0 which yields Sm = X. �

4. The chaotic dynamics of weakly almost periodic points of
amenable group actions

In this section, we mainly discuss some chaotic properties of a given G-
system with proper weakly almost periodic points. Firstly we review some
needed notions. Given a G-system, a pair (x, y) ∈ X×X is said to be proximal
if there exists {ti}∞i=1 ⊂ G such that limi→∞ tix = z and limi→∞ tiy = z;
distal if inf{d(tx, ty) : t ∈ G} > 0; a Li-Yorke pair if (x, y) is proximal and
sup{d(tx, ty) : t ∈ G} > 0.

Theorem 4.1. Let (X,G) be a G-system and x ∈ QW (G) − W (G). Then
there exists µ ∈Mx such that Sµ = Cx if and only if there is a Følner sequence
F = {Fi}∞i=1 of G such that for any neighborhood U of x,

(4.1) lim inf
i→∞

|{g ∈ Fi : gx ∈ U}|
|Fi|

> 0.

In this case, µ is a limit point of { 1
|Fi|

∑
g∈Fi

δgx}∞i=1.



48 B. LING, X. NIE, AND J. YIN

Proof. Assume that x ∈ QW (G) −W (G), by (2.1), Cx = ω(x,G). Suppose
that (4.1) holds and µ is a limit point of { 1

|Fi|
∑
g∈Fi

δgx}∞i=1. For any open set

U with U ∩ω(x,G) 6= ∅, since G(x) is dense in ω(x,G), there exists t ∈ G such
that tx ∈ U . By the continuity of t, there exists ε > 0 such that tB(x, ε) ⊂ U ,
then µ(U) ≥ µ(tB(x, ε)). As µ is invariant, µ(tB(x, ε)) = µ(B(x, ε)). Take
0 < δ < ε such that C`(B(x, δ)) ⊆ B(x, ε), then by Lemma 2.1,

lim inf
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, δ)) ≤ lim sup
i→∞

1

|Fi|
∑
g∈Fi

δgx(B(x, δ))

≤ lim sup
i→∞

1

|Fi|
∑
g∈Fi

δgx(C`(B(x, δ)))

≤ µ(C`(B(x, δ))) ≤ µ(B(x, ε)).

By (4.1), we have µ(U) ≥ µ(B(x, ε)) > 0, so ω(x,G) ⊂ Sµ. From Proposition
2.2, the proof process of Proposition 2.6 and noting Cx = ω(x,G), we have
Sµ = Cx.

On the other hand, if for any Følner sequence F = {Fi}∞i=1 of G there exists
a neighborhood U of x such that

(4.2) lim inf
i→∞

|{g ∈ Fi : gx ∈ U}|
|Fi|

= 0.

For each µ ∈ Mx, there is a Følner sequence F = {Fi}∞i=1 of G such that
limi→∞

1
|Fi|

∑
g∈Fi

δgx = µ. For the Følner sequence F = {Fi}∞i=1, there exists

an open set V satisfying (4.2). So by Lemma 2.1,

µ(V ) ≤ lim inf
i→∞

1

|Fi|
δgx(V )) = lim inf

i→∞

|{g ∈ Fi : gx ∈ V }|
|Fi|

= 0

which implies that x /∈ Sµ. But by (2.1), x ∈ Cx, so Sµ 6= Cx for any µ ∈
Mx. �

Next we present some chaotic properties of the systems with proper (quasi)
weakly almost periodic points. To do that, the following lemma is necessary.

Lemma 4.1 ([2]). Let (X,G) be a G-system. Then for any x ∈ X, there exists
y ∈ A(G) such that x and y are proximal.

Theorem 4.2. Let (X,G) be a G-system. If there exists a proper weakly almost
periodic point x ∈ X, i.e., x ∈ W (G) − A(G), then (X,G) contains at least
countable Li-Yorke pairs.

Proof. Based on Lemma 4.1, there exists y ∈ A(G) such that x and y are proxi-
mal. DenoteA = C`(G(y)), then there is ε > 0 such that a := d(B(x, ε), A) > 0.
Set S = {g ∈ G : gx ∈ B(x, ε)}, then S has positive lower density with respect
to any Fløner sequence of G. Note that for all g ∈ S, gy ∈ A and gx ∈ B(x, ε),
so d(gx, gy) > d(B(x, ε), A) > 0 which implies supt∈G d(tx, ty) > 0, so (x, y) is
a Li-Yorke pair.
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Clearly for each t ∈ G, (tx, ty) is also a Li-Yorke pair. Since G is infinite
countable, (X,G) contains countable Li-Yorke pairs. �

Remark 4.1. Similarly, we can prove that if there exists a proper quasi-weakly
almost periodic point x ∈ X, i.e., x ∈ QW (G) −W (G), then (X,G) contains
countable Li-Yorke pairs.

In [11], the authors introduced the notions of ergodic chaos and strongly
ergodic chaos. In the following, we introduce such two chaotic concepts of
amenable group actions.

Definition 4.1. A G-system (X,G) is said to be ergodically chaotic, EC for
short, if (X,G) is topologically ergodic and ergodically sensitive.

Definition 4.2. A G-system (X,G) is said to be strongly ergodically chaotic,
SEC for short, if (X,G) is strongly ergodic and syndetic sensitive.

Obviously SEC implies EC, and there is an example in [11] showing that EC
and SEC are two distinct notions.

Proposition 4.1. Let (X,G) be a G-system and x ∈ R(G) with C`(G(x)) = X.
Then (X,G) is topologically ergodic if and only if for any ε > 0, there is a
Følner sequence F = {Fi}∞i=1 of G such that N(B(x, ε), B(x, ε)) has positive
upper density with respect to F .

Proof. The necessity is obvious, so we prove only the sufficiency.
Suppose that U and V are two nonempty open subsets of X. Since C`(G(x))

= X, for each ε > 0, there exist g1 and g2 ∈ G such that g1(B(x, ε)) ⊂ U
and g2(B(x, ε)) ⊂ V . From the assumptions, there exists a Følner sequence
F = {Fi}∞i=1 of G such that N(B(x, ε), B(x, ε)) has positive upper density with
respect to F . For any g ∈ N(B(x, ε), B(x, ε)), B(x, ε) ∩ g−1(B(x, ε)) 6= ∅. So

g1(B(x, ε) ∩ g−1(B(x, ε))) ⊂ g1(B(x, ε)) ∩ g1g−1(B(x, ε))

= g1(B(x, ε)) ∩ g1g−1g−12 (g2(B(x, ε))) ⊂ U ∩ g1g−1g−12 (V )

which implies that g2gg
−1
1 ∈N(U, V ). Thus g2N(B(x, ε), B(x, ε))g−11 ⊂N(U, V ).

Next we only need to prove that g2N(B(x, ε), B(x, ε))g−11 has positive upper
density with respect to the Følner sequence {g2Fig−11 }∞i=1. Actually we have

|N(U, V ) ∩ g2Fig−11 |
|g2Fig−11 |

≥ |N(B(x, ε), B(x, ε)) ∩ Fi|
|Fi|

.

Since {Fi}∞i=1 is a Følner sequence of G, so does {g2Fig−11 }∞i=1. In fact, for
every g ∈ G,

|gg2Fig−11 ∆g2Fig
−1
1 | = |gg2Fi∆g2Fi| ≤ |gg2Fi∆Fi|+ |g2Fi∆Fi|

and note that

lim
i→∞

|gg2Fi∆Fi|
|Fi|

= 0, lim
i→∞

|g2Fi∆Fi|
|Fi|

= 0, |g2Fig−11 | = |Fi|,
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thus

lim
i→∞

|gg2Fig−11 ∆g2Fig
−1
1 |

|g2Fig−11 |
= 0

and so {g2Fig−11 }∞i=1 is a Følner sequence of G.
Because N(B(x, ε), B(x, ε)) has positive upper density with respect to F ,

that is

lim sup
i→∞

|N(B(x, ε), B(x, ε)) ∩ Fi|
|Fi|

> 0

which implies that

lim sup
i→∞

|N(U, V ) ∩ g2Fig−11 |
|g2Fig−11 |

> 0.

Since {g2Fig−11 }∞i=1 is also a Følner sequence of G, (X,G) is topologically er-
godic. The proof is completed. �

Proposition 4.2. Let (X,G) be a G-system and x ∈ R(G) with C`(G(x)) = X.
Then (X,G) is ergodicly sensitive if and only if there exists δ > 0 such that
for any ε > 0, SG(B(x, ε), δ) has positive upper density with respect to some
Følner sequence of G.

Proof. The necessity is obvious, we only need to prove the sufficiency. Take
a nonempty open subset V ⊂ X, since C`(G(x)) = X there exist g0 ∈ G
and ε > 0 such that g0(B(x, ε)) ⊂ V . By the sufficient assumption, there
exists δ > 0 such that SG(B(x, ε), δ) has positive upper density with respect
to some Følner sequence of G. Take arbitrarily g ∈ SG(B(x, ε), δ), then there
are y, z ∈ B(x, ε) such that d(gy, gz) > δ. Clearly, g0y, g0z ∈ V , thus

d(gy, gz) = d(gg−10 (g0y), gg−10 (g0z)) > δ.

So gg−10 ∈ SG(V, δ) which implies SG(B(x, ε), δ)g−10 ⊂ SG(V, δ). Similar to
the proof of Proposition 4.1, we can prove easily that SG(B(x, ε), δ)g−10 has
positive upper density with respect to some Følner sequence of G. The proof
is ended. �

Theorem 4.3. A transitive but not minimal G-system with a full measure
center is strongly ergodically chaotic.

Proof. For nonempty open subsets U and V of X, let B =
⋃
g∈G gU and

C = B ∩ V . Let µ be such an invariant measure satisfying µ(B) > 0 and
µ(C) > 0. Then there exists a compact set A ⊆ G such that

µ

⋃
g∈A

gU

 > µ(B)− µ(C)

2
> 0.
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Thus for each g1 ∈ G, µ(g1(
⋃
g∈A gU)) > 0 and

g1

⋃
g∈G

gU

⋂V 6= ∅.

So for each g1 ∈ G there exists g ∈ A such that g1g(U) ∩ V 6= ∅. Write

S = {gg1 : for each g1 ∈ G, there exists g ∈ A such that g1g(U) ∩ V 6= ∅}.
For convenience, let A0 = A∪A−1. Clearly A0 is compact and SA0 = G. Then
S is a syndetic subset of G which means that (X,G) is syndetic transitive.

Next we prove that (X,G) is syndetic sensitive.
Since (X,G) is not minimal, there exists x ∈ X such that C`(G(x)) 6= X.

Choose y ∈ X−C`(G(x)) and let 4δ := d(y, C`(G(x)). Write V = B(y, δ), then
for any nonempty open set U of X, by the previous conclusion, N(U, V ) =
{g ∈ G : gU ∩ V 6= ∅} is syndetic. Thus there is a compact set M ⊆ G
such that MN(U, V ) = G. Let P = M ∪M−1, then P is also compact and
PN(U, V ) = G.

Choose ε > 0 such that for all z ∈ B(x, ε) and p ∈ P , d(pz, px) < δ. Since
N(U,B(x, ε)) = {g ∈ G : gU ∩B(x, ε) 6= ∅} is syndetic, there exists a compact
subset M1 of G such that M1N(U,B(x, ε)) = G. Let Q = M1 ∪M−11 . We also
have QN(U,B(x, ε)) = G.

Take v ∈ U . For any g ∈ G, there exists q ∈ Q such that qgv ∈ B(x, ε).
Then for all p ∈ P , we have pqgv ∈ B(C`(G(x)), δ). Choose w ∈ U , since
qg ∈ G, there exists p0 ∈ P such that p0qg(w) ∈ B(y, δ). Thus

d(p0qg(v), p0qg(w)) > 2δ.

Since g is arbitrary and p0q ∈ PQ, let J = {g ∈ G : d(gy, gz) > 2δ}, then
QPJ = G. Since QP is compact, then J is syndetic. �
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